Supporting Information

Simultaneous Reduction of Surface, Bulk, and Interface Recombination for Au Nanoparticles Embedded Hematite Nanorod Photoanodes toward Efficient Water Splitting

Lei Wang,^{a,b,*} Tomohiko Nakajima,^c Yan Zhang ^d

a. College of Chemistry and Chemical Engineering and Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, , Hohhot, 010021 P. R. China. E-mail: <u>wanglei@imu.edu.cn</u>

b. State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering
Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences, Lanzhou 730000, China.

c. Advanced Coating Technology Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

d. College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou730000, China.

Figure S1. EDX scanning of Au/Fe₂O₃ NRs.

Figure S2. (a) XRD pattern, (b) Raman spectrum, and (c) UV-vis diffuse reflectance spectrum of Au/Fe_2O_3 NFs. The results of Fe_2O_3 NFs were shown for comparison. H: Fe_2O_3 ; M: Fe_3O_4 ; F: Fe; A: Au.

Figure S3. Comparison of 2D XRD patterns of Fe₂O₃ NFs (NFs) and Au/Fe₂O₃ NRs (NRs).

Figure S4. (a) XPS survey spectra, and (b) high resolution Fe 2p of Fe_2O_3 NFs, Au/Fe₂O₃ NFs, and Au/Fe₂O₃ NRs.

Figure S5. SEM images of Au/Fe₂O₃ NRs. The Au/Fe₂O₃ NFs were annealed in Ar atmosphere at various temperatures. (a) 500 $\$; (b) 550 $\$; (c) 600 $\$; (d) 650 $\$; (e) 700 $\$.

Figure S6. XRD patterns of Au/Fe₂O₃ NRs annealing in Ar atmosphere at various temperatures. H: Fe_2O_3 ; M: Fe_3O_4 ; W: FeO; A: Au.

Figure S7. SEM images of (a) Au/Fe₂O₃ NRs, (b) Ti/Fe₂O₃ NRs, and (c) P/Fe₂O₃ NRs.

Figure S8. (a) UV-vis diffuse reflectance spectra and (b) calculation of band gaps of Au/Fe_2O_3 NRs. The Au/Fe_2O_3 NFs were annealed in Ar atmosphere at various temperatures.

Figure S9. Stability of Au/Fe₂O₃ NRs applied at 1.5 V_{RHE} .

Figure S10. (a-c) Cyclic voltammetry curves and (d) relative electrochemical surface areas of Fe_2O_3 NFs and Au/Fe₂O₃ NRs.

As scan rate increases from 20 to 100 mV sec⁻¹, the current increases while a small positive shift of the oxidation peak potential and a negative shift of the reduction peak potential have been observed with the increased scan rate. It should be related to the reaction capability and the OH^- concentration at the interface between the electrode and electrolyte.

Figure S11. Linear sweep voltammogram (LSV) curves of (a) Fe_2O_3 NFs and (b) Au/Fe₂O₃ NRs in 1 M KOH electrolytes without and with H_2O_2 .

Figure S12. (a) UV-vis diffuse reflectance spectra, and (b) XRD patterns of Au/Fe₂O₃ NRs, Ti/Fe₂O₃ NRs, and P/Fe₂O₃ NRs. H: Fe₂O₃; M: Fe₃O₄; W: FeO; F: Fe; A: Au.

Table S1Comparison of photoresponses of recent hematite electrodes in solar watersplitting under AM 1.5G illumination.¹⁻⁶

Photoanodes	i @ 1.23 V _{RHE}	Onset potential	Electrolyte
ITO/Fe ₂ O ₃ nanowires/Fe ₂ TiO ₅ /FeNiOOH on FTO ¹	2.2 mA cm^{-2}	~0.95 V _{RHE}	1 M NaOH
Gradient P doped Fe_2O_3 nanobundles on FTO ²	$\sim 1.48 \text{ mA cm}^{-2}$	$0.8 V_{RHE}$	1 M KOH
CoFeO _x /Fe ₂ O ₃ NRs on FTO ³	1.2 mA cm^{-2}	$\sim 0.6 V_{RHE}$	1 M NaOH
Zr induced Fe ₂ O ₃ nanotubes on FTO ⁴	1.5 mA cm^{-2}	$\sim 0.85 V_{RHE}$	1 M NaOH
Ti doped Fe ₂ O ₃ NRs on FTO ⁵	2.5 mA cm^{-2}	$\sim 0.85 V_{RHE}$	1 M KOH
Ti doped Fe ₂ O ₃ NRs on FTO ⁶	2.4 mA cm^{-2}	$\sim 0.95 V_{RHE}$	1 M NaOH
Au/Fe_2O_3 on Fe substrate in this work	2.0 mA cm ⁻²	0.6 V _{RHE}	1 M KOH

Table S1 compared the photocurrent densities for the hematite nanostructures in more recent years. Compared to the hematite nanostructures grown on FTO substrates, the Au/Fe₂O₃ nanorods on iron substrate shows a relatively higher photoresponse, especially for a lower onset potential. A higher temperature annealing (700-800 $^{\circ}$ C) is introduced to acivate the Fe₂O₃ on FTO substrates, and Sn doping in the Fe₂O₃ nanostructures.

References

- P. Tang, H. Xie, C. Ros, L. Han, M. Biset-Peiró, Y. He, W. Kramer, A. P. Rodr guez, E. Saucedo, J. R. Galán-Mascarós, T. Andreu, J. R. Morante and J. Arbiol, *Energy Environ. Sci.*, 2017, 10, 2124.
- 2 Z. Luo, C. Li, S. Liu, T. Wang and J. L. Gong, *Chem. Sci.*, 2017, 8, 91.
- 3 J. Zhang, R. Garc á-Rodr guez, P. Cameron and S. Eslava, *Energy Environ. Sci.*, 2018, 11, 2972.
- 4 C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang and J. L. Gong, *Angew. Chem. Int. Ed.*, 2017, **129**, 4214.
- 5 Z. Luo, T. Wang, J. Zhang, C. Li, H. Li and J. L. Gong, Angew. Chem. Int. Ed., 2017, 56, 12878.
- 6 Z. Wang, X. Mao, P. Chen, M. Xiao, S. A. Monny, S. Wang, M. Konarova, A. Du and L. Wang, *Angew. Chem. Int. Ed.*, 2018,131, 1042.