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1. Supporting results:

Transmisson electron microscopy (TEM) characterization of different nanoparticles
prepared using a-Syn fibrils. Pd, Cu, Pt, Au and Ag nanoparticles were prepared as explained
in material and method section. The colour change was observed for all nanoparticles after
reduction with NaBH4. The bottles after reduction are shown in Figure S7 (a,fk,p,u).
Interestingly no agglomeration of Pd nanoparticles was observed in a-syn-PdNPs and Pd
showed highly monodispersed nanoparticles (Figure S7b and Si1c). Selected area electron
diffraction (SAED) pattern of nanocomposites suggested face-centered cubic (fcc) structure
and polycrystalline nature of palladium nanoparticles (Figure S7d) with lattice plane at (111,
200, 220 and 311). The diameter of Pd nanoparticles on fibril surface was found to ca. 3 nm as
shown in Figure S7e. Spherical shape of nanoparticles coated on fibril was found for all metal
nanocomposites. The low magnification (b,g,l,g,v) and high magnification (c,h,m,r,w) TEM
images showed similar range of particle size. Interestingly, Ag showed larger particles among
all metal nanoparticles. Similar SAED pattern was found for all metal nanoparticles and
showed fcc crystal structure. Diameter of different nanoparticles are shown in Figure S7
(e,J,0,t,y) - Cu (ca. 3 nm), Pt (ca. 2.5 nm), Au (ca. 4 nm) and Ag (ca. 4.4 nm).

Varying the morphology of a-Syn-fibril and testing in benzofuran synthesis. Different
palladium nanocomposites were prepared by varying the morphology of a-Syn-fibril as
described in material and method. TEM was performed to analyse the morphology of Pd
nanocomposites (Figure S10). a-Syn-PdNPs monomer showed spherical nanoparticles on
amorphous monomeric protein. a-Syn-PdNPs fibril was sonicated after preparation. Short fibril
with variable length was observed with spherical PANPs coated on fibril. The a-Syn fibril
digested in a-Syn-PdNPs composite using proteinase K. Partially digested fibril showed
agglomerated palladium nanoparticles on fibril surface (Figure S10).

Circular dichroism (CD) spectroscopy characterization of a-Syn-PdNPs before and after
reaction. We have recorded the CD spectra for freshly prepared catalyst (a-Syn-PdNPs) and
recovered a-Syn-PdNPs after four turnovers. The CD spectra for both a-Syn fibril as well as
the nanocomposite (o.-Syn-PdNPs) showed a negative peak at 218 nm, which can be assigned
for the B-sheet structure of the fibril.> Similar trend has been observed for a recovered o-Syn-
PdNPs (after four cycle) with a slightly reduced intensity (Figure S12). This data suggest that
o-Syn fibril structure is mostly unaffected even after four cycle of chemical reaction.
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Plausible catalytic cycle for the formation of N-Arylindole. A plausible catalytic cycle is

provided in Scheme S1 for the formation of N-arylindole.?
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Scheme S1: Plausible mechanism for the formation of N-arylindole (5)

Electrooxidation of ethanol

The cyclic voltammetry (CV) measurements were carried out for a-Syn-PdNPs in 1 M KOH
solution (without ethanol) at the scan rate of 50 mVs™ to examine the electrochemical property
and stability of catalyst. The Fig. S1 shows one peak in the anodic scan (forward scan) at
potential —0.59 V which is associated with the formation of adsorbed OH™ and desorption of
hydrogen on the Pd surface.? In the backward scan, two peaks were observed; one peak in the
cathodic scan at potential —0.38 V is associated with the reduction of PdO to metallic Pd and
another peak at potential —0.83 V is related to hydrogen adsorption.
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Figure S1. Cyclic voltammograms (CVs) of a-Syn-fibril and a-Syn-PdNPs on GCE in 1 M
KOH at the scan rate of 50 mV s,
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Based on the results and available reports, the reaction mechanism of the reduction of PdO to
metallic Pd has been dicussed below. The formation of metallic Pd to PdO and reduction of
PdO to metallic Pd can be explained in four reaction steps as discussed by Feliciano-Ramos et
al.*

Pd +OH” —— Pd-OHggs+e (1)
Pd-OHgge + OH™ ——= PdO+H,0+e (2
Pd-OH,gs + Pd-OHaqs ——> PdO + H,0 (3)
PdO +H,0 +2 e — > Pd +20H" (4)

The metallic Pd adsorbs OH- and releases one e as given in reaction (1). Pd-OHags further
adsorb the OH"to form PdO and releases H20 (2). Two molecules of Pd-OHags reacts to form
PdO and releases H>O (3). The bond breaking reaction of PdO to metallic Pd involves in the
release of OH~ (4) which again adsorbed by the metallic Pd to form PdO in the subsequent
steps in presence of 1M KOH in the cyclic voltammetry experiment.

Identification of intermediate species in ethanol oxidation: We have carried out the CVs of
a-Syn-fibril and a-Syn-PdNPs in 1 M KOH + 1 M ethanol at the scan rate of 50 mV s, which
shows two well-defined characteristic current peaks in the forward and reverse potential
windows. The observed peak in forward scan at -0.1V in CV is assigned for oxidation of
ethanol, while the second peak in the reverse scan attributes to the oxidation of freshly adsorbed
ethanol and adsorbed carbonaceous species (Fig. 5d). The assignment of peaks had been done
after systematic survey of available literature.

Identifying reactive intermediates or products is key for solving mechanism of ethanol
oxidation. Two commonly accepted pathways for the oxidation of ethanol using Pd based
catalyst has been discussed by Wang et al.® In the path 1, the ethanol is partially oxidized to
acetate by releasing 4 electrons or to acetaldehyde by releasing 2 electrons without the breaking
of the C—C bond.

Path 1: CH3-CH,OH + HyO ———= CH3;-COOH + 4H" + 4e~

CH3-CH,OH ——> CH4-CHO + 2H* + 2¢”

In path 2, the ethanol is oxidized to a CO2 or carbonates via COads intermediate and
release 12¢—.

Path 2: CH3-CH,0H + 3H,0 ———> 2CO, + 12H" + 12¢”
CH3-CH,0H + 5H,0 —— 2HCO3 + 14H* + 12¢”

CH3-CH,0H + 5H,0 ——> 2C05% + 16H* + 12¢"

We have attempted to identify the intermediates formed in electrooxidation of ethanol
during longer experiments (after 1000 cycle) by gas chromatography (GC). The GC data
revealed the presence of other intermediate species in addition to ethanol. *tH NMR of the same
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sample showed the presence of traces such as acetic acid, acetaldehyde and its polymeric
component (paraldehyde) in addition to ethanol. The GCMS further supported the presence of
these component in the solution; ethanol (m/z: 46.01), acetaldehyde (m/z: 44.05), acetic acid
(m/z: 60.04) and paraldehyde (132.16). This confirms the oxidation of ethanol in the CV
experiments.

Figure S2. Gas Chromatographic data of (1M EtOH + 1M KOH) solution before CV

experiments
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Figure S4. 'H and ¥C NMR (D20) of the (1M EtOH + 1M KOH) solution after CV

experiments:
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2. Material and methods.

2.1 Reagent Information. Unless otherwise stated, all reactions were carried out under air
atmosphere in screw cap reaction tubes. All the solvents were bought from Aldrich insure-seal
bottle and were used as received. Palladium acetate was obtained as a gift from Johnson
Matthey. The metal salts CuSO4.5H20, PtCls, HAUCls.3H.0O and AgNO3 were purchased from
different commercial sources like Lobachemie, Sigma and Merck. All the Phenols,
diphenylamines and olefins were bought from Aldrich and Alfa-Aesar. For column
chromatography, silica gel (100-200 mesh) from SRL Co. was used. A gradient elution using
pet ether and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel
60F254).

2.2 Analytical Information for product characterization: All isolated compounds were
characterized by *H NMR, *C NMR spectroscopy, gas chromatography (GC) and GCMS.
Representative copies of the 'H NMR, *C NMR can be found in the annexure. Unless
otherwise stated, all Nuclear Magnetic Resonance spectra were recorded on a Bruker 400 MHz
and 500 MHz instrument. All *H NMR experiments were reported in units, parts per million
(ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the
deuterated solvent, unless otherwise stated. All 3C NMR spectra were reported in ppm relative
to deuterochloroform (77.16 ppm), unless otherwise stated, and all were obtained with H
decoupling. Product yield of crude reaction mixture analysed by gas chromatography (GC)
using n-decane as internal standard. All GCMS analysis was done by Agilent 7890A GC
system connected with 5975C inert XL EI/CI MSD (with triple axis detector).

2.3 a-Synuclein expression and purification: a-Synuclein (a-Syn) protein was expressed in
Escherichia coli BL21 (DE3) strain using published protocol by Volles et al ® with some
modification.” In brief, E. coli cells with a-Syn gene containing plasmid (pRK 172) were grown
in Luria broth. When cells reach optical density of 0.8-0.9 at 600 nm, IPTG induction was done
for protein expression. After 4 hours of induction, bacterial cells were pelleted down by
centrifugation (4,000 xg, 30 minutes) and resuspended in 50 mM Tris, 150 mM NaCl, 10 mM
EDTA, pH 8.0. Cells were sonicated after addition of protease inhibitor cocktail (Roche) at
40% amplitude with pulse rate of 45 pulse /minutes for 15 minutes. Then it was further heated
in water bath at 95°C for 15 minutes. After heating for 15 minutes, to the supernatant, glacial
acetic acid (228 pl/ml of supernatant) and 10% streptomycin sulphate solution (136 pl/ml of
supernatant) was added. After 30 minutes of incubation at 4°C it was centrifuged (14,000 xg,
30 minutes). Equal volume of saturated ammonium sulphate was added to supernatant to
precipitate the protein. The resultant solution was centrifuged and pellet was resuspended in
ammonium sulphate solution (saturated ammonium sulphate and water, 1:1 v/v). This was
again centrifuged at (14,000 xg, 30 minutes). Protein pellet was again dissolved in 100 mM
ammonium acetate solution and vortex to dissolve the protein. Then equal volume of ethanol
was added to precipitate the protein. This solution was then centrifuged after 30 minutes of
incubation. This step was repeated twice. Protein solution was then resuspended in 100 mM
ammonium acetate and was lyophilized to obtain dry powder. It was stored at -20°C for further
use.
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2.4 Fibril formation: The lyophilized protein was suspended in 20 mM Gly-NaOH buffer, pH
7.4, 0.01% sodium azide. The protein was solubilized by addition of few drops of 2N NaOH
and then finally pH was adjusted to 7.4 using 2N HCI. The protein was dialyzed for 12 hours.
The protein concentration was determined by UV spectrophotometer (JASCO V-650)
considering the molar absorptivity (g) of 5960 Mtcm™ for a-Syn. Finally, protein was diluted
to 300 uM and it was taken in 2 ml microfuge tube and placed into an EchoTherm model RT11
rotor (Torrey Pines Scientific, USA) at 50 r.p.m. inside a 37 °C incubator. The fibril formation
was confirmed by TEM.

2.5 Preparation of Palladium, Copper, Platinum, Gold and Silver nanoparticles on a-Syn
fibril: The a-Syn-fibril palladium nanoparticle composite (a-Syn-PdNPs) was prepared by
adding 500 uL aqueous suspension of Pd(OAc)2 (20 mM, 2.24 mg) into a-Syn- fibrils (300
uM, 500 pL) while stirring. Subsequent addition of NaBHj4 solution (10 mM, 100 pL) turned
the entire solution into black representing formation of Pd (0). The solution was stirred for 1
hour and then centrifuged (14,000xg, 30 minutes). The pellet was lyophilized to obtain powder.
Similarly, copper nanoparticles (CuNPs) from CuSO4.5H.0 (20 mM, 2.49 mg), platinum
nanoparticles (PtNPs) from PtCls (20 mM, 3.37 mg), gold nanoparticles (AuNPs) from
HAuCI4.3H20 (20 mM, 3.94 mq) and silver nanoparticles (AgNPs) from AgNOs (20 mM, 1.7
mg) were made after addition of a-Syn fibrils (300 uM, 500 pL) followed by reduction with
NaBHy3 solution (10 mM, 100 pL). The solution was stirred for 1 hour and then centrifuged to
obtain pellet, which was lyophilized to obtain solid powder. All nanoparticles were synthesized
at least three times and found to be consistence. Palladium nanoparticles synthesized on a-Syn
monomer in similar way, where we used a-Syn monomer instead of fibril. To obtain sonicated
a-Syn-PdNPs, firstly a-Syn Pd-NPS was synthesized as described above and then sonicated
(30 pulse/minute at 20 % amplitude) using probe sonicator for 10 minutes. It was then
centrifuged and lyophilized to obtain dry powder. Proteinase K (PK) digested a-Syn Pd-NPs
was made by digesting a-Syn-PdNPs by PK (50 uM, 12 hours). Then solution was centrifuged
and lyophilized. The powder obtained was used for characterization and organic
transformation.

2.6 Transmission Electron Microscopy (TEM): 10 pl samples after preparation of all
nanoparticles were spotted on carbon coated copper grid (Electron Microscopy Sciences, Fort
Washington, PA) and kept for 10 minutes. The excess sample was wiped out. It was washed
twice with distilled water. Samples were then stained with 10 pl of 1% (w/v) uranylformate
and then it was air-dried. TEM imaging was done using electron microscope (Philips CM 200)
and high resolution TEM was done using FEG-TEM (FEI Tecnai). Images were acquired at
6,600X and 27,000X using the Keen View Soft imaging system. 10-12 images were taken
randomly for each sample. Experiment was repeated thrice.

2.7 Fourier transform infrared (FTIR) study: FTIR of a-Syn and a-Syn Pd-NPS was done
by making thin pellet of KBr containing samples by compressing the grinded KBr powder at
the pressure of ~5 ton using hydraulic pressure pump. The pellet was dried under IR lamp. The
IR spectra were acquired in transmittance mode in the range of 5000-500 cm™ by using Bruker
Vertex-80 instrument (Bruker, Germany). The resolution was set at 4 cm™ and background
spectra were automatically subtracted from sample.
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2.8 X-ray photoelectron spectroscopy (XPS): 20ul a-Syn fibril and a-Syn-PdNPs was
spotted on aluminum sheet and allowed to air dry for 2 hours. Sample was mounted and
degassed over night at ultrahigh vacuum. XPS spectrum was recorded on Kratos AXIS Supra
(UK) having X ray source of Monochromatic Al K-alpha.C1ls peak from surface adsorbed
carbon at 284.7 eV was used for internal calibration. Peak fitting and analysis was done using
XPSPeak4.1.

2.9 Thermo gravimetric analysis (TGA): To determine the thermal stability of a-Syn fibril
and o-Syn-PdNPs, TGA was done in Diamond TG/DTA (Perkin Elmer, USA). The sample
was heated from 25 °C to 800 °C under N2 environment at rate of 10°C/minute. Weight loss
was recorded with temperature and plotted.

2.10 X-ray diffraction (XRD): X-ray diffraction (XRD) analysis on a-Syn fibril and a-Syn-
PdNPs was done using Smartlab Rigaku diffractometer with monochromatic Cu ka radiation
(A = 1.5406 A) operated at voltage and current of 40 kV and 30 mA respectively. The 6-20
scanning was done in the region of 26 between 10° and 90°. The peaks obtained were compared
with the Joint Committee on Powder Diffraction Standards (JCPDS) file 87-0638 for palladium
metal.

2.11 Inductive coupled plasma atomic emission spectroscopy (ICP-AES): The amount of
palladium in a-Syn-PdNPs was estimated by ICP-AES (SPECTRO Analytical Instruments
GmbH, Germany). 10 mg of a-Syn-PdNPs was dissolved in HNO3 and palladium concentration
in solution was obtained from standard curve of known palladium solution. The results repeated
experiments showed that the 10 mg of the composite (a-Syn-PdNPSs) contains 2 mg (20 wt %)
of Pd.

2.12 Electrooxidation of ethanol. For electrochemical measurements, we have carried out
cyclic voltammetry and chronoamperometry with a CHI1140A electrochemical workstation
(CHI110, Austin, TX). All electrochemical measurements were performed at room
temperature. The electrochemical experiments were carried in a three electrodes cell using a
platinum wire, silver-silver chloride (Ag/AgCl), and a glassy carbon electrode (GCE) (D = 3
mm) as counter reference electrodes and the working electrode, respectively. Before starting
the experiment, the GCE was properly polished with alumina powder (successively 1,0.3 and
0.05 um) for 5 min respectively. After each polishing step, the washing of electrode was done
with Milli Q water and then cleaned in an ultrasonic bath using ethanol and water. After
cleaning of the electrode, 5 ul of a-Syn-PdNPs composite was carefully dropped onto the active
surface of the electrode and allowed to dry at room temperature. 1M KOH was used as the
supporting electrolyte during the electrochemical measurement. Further, to remove the
dissolved oxygen in the electrolyte, nitrogen gas was purged for 10 minutes before
electrochemical measurement. The important parameter of a catalyst on which the
electrocatalytic activity is strongly dependent evaluated the existing electrochemical active
surface area (ECSA). The ECSA of a-Syn-PdNPs composite was calculated from the area of
reduction peak of PdO in the cyclic voltammetry (CV) in 1M KOH solution at the scan rate of
50 mVs™. The ECSA (m? per ged) value was calculated according to the following Equation
(1) 8,9
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Q

ECSA = mxCxv

Where Q is the Coulombic charge corresponding to the reduction peak area of PdO (mC),
which can be obtained from the area integral of Figure 5a and mis the mass of Pd loading (mg)
which is 9.5ng in a-Syn-PdNPs composites. C is the charge required for electro-reduction of a
PdO single layer (405 mC/cm?yq) and v is the scan rate.

2.13 a-Syn-PdNPs Catalyzed Benzofuran Synthesis from corresponding Phenols and
Olefins (General Procedure A). To a dried screw cap reaction tube that charged with a
magnetic stir-bar, phenol (1 mmol), a-Syn-PdNPs (7.5 mol%), 1,10-phenanthroline
monohydrate (15 mol%), V205 (1.25 mmol), NaOAc (0.75 mmol) and olefin (0.5 mmol) were
added. Then 1,2-dichloroethane (DCE) solvent (4 mL) was added and the reaction tube was
closed with the screw cap. The reaction tube was heated at 110 °C for 24 h under vigorous
stirring. Then the reaction mixture was cooled and quenched with ethyl acetate. After
centrifuging, the reaction mixture was filtered (repeated thrice by washing with ethyl acetate)
and combined organic portions were evaporated under reduced pressure. The residue was
purified by column chromatography using silica gel (100-200 mesh size) and petroleum-ether/
ethyl acetate as the eluent.

5-nitro-2-phenylbenzofuran (4a): Compound 4a was synthesized by general procedure A
using 4-nitrophenol (1 mmol) and styrene (0.5 mmol) as the substrates. Pure product was
obtained as light orange solid in 91%. Isolated by column chromatography of the crude reaction
mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

!H NMR (400 MHz, CDCls) 6 8.49 (d, J = 2.3 Hz, 1H), 8.21 (dd, J = 9.0, 2.3 Hz, 1H), 7.87
(d, J=7.2Hz, 2H), 7.58 (d, J = 9.0 Hz, 1H), 7.49 (dd, J = 8.1, 6.7 Hz, 2H), 7.44 (d,J = 7.2
Hz, 1H), 7.12 (s, 1H) ppm.

13C NMR (101 MHz, CDCls) & 159.40, 157.75, 144.47, 129.82, 129.76, 129.31, 129.15,
12541, 120.24, 117.39, 111.55, 101.73 ppm.

GC-MS (m/z): 239.3 [M]".

5-nitro-2-(4-methoxyphenyl)benzofuran (4b): Compound 4b was synthesized by general
procedure A using 4-nitrophenol (1 mmol) and 4-methoxystyrene (0.5 mmol) as the substrates.
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Pure product was obtained as yellow solid in 78%. Isolated by column chromatography of the
crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:2).

'H NMR (500 MHz, CDCls3) & 8.46 (d, J = 1.7 Hz, 1H), 8.18 (dd, J = 8.9, 1.8 Hz, 1H), 7.81
(d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.9 Hz, 1H), 7.01 (d, J = 8.6 Hz, 2H), 6.98 (s, 1H), 3.88 (s,
3H) ppm.

13C NMR (126 MHz, CDCls) & 160.97, 159.58, 157.65, 144.45, 130.12, 127.01, 122.09,
119.77, 116.98, 114.63, 111.30, 100.04, 55.57 ppm.
GC-MS (m/z): 269.4 [M]".

2-(4-(tert-butyl)phenyl)-5-nitrobenzofuran (4c): Compound 4c was synthesized by general
procedure A using 4-nitrophenol (1 mmol) and 4-tert-butylystyrene (0.5 mmol) as the
substrates. Pure product was obtained as yellow solid in 62%. lIsolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDCls) 6 8.49 (d, J = 2.3 Hz, 1H), 8.20 (dd, J = 9.0, 2.3 Hz, 1H), 7.81
(d, J=8.4 Hz, 2H), 7.58 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 8.4 Hz, 2H), 7.08 (s, 1H), 1.37 (s,
9H) ppm.

13C NMR (126 MHz, CDCls) 6 159.69, 157.76, 153.31, 144.46, 129.95, 126.58, 126.13,
125.27,120.03, 117.24, 111.48, 101.11, 35.05, 31.34 ppm.

GC-MS (m/z): 295.1 [M]".

5-nitro-2-(3-methylphenyl)benzofuran (4d): Compound 4d was synthesized by general
procedure A using 4-nitrophenol (1 mmol) and 3-methylystyrene (0.5 mmol) as the substrates.
Pure product was obtained as yellow solid in 86%. Isolated by column chromatography of the
crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

'H NMR (500 MHz, CDCls) 6 8.48 (d, J = 2.3 Hz, 1H), 8.19 (dd, J = 9.0, 2.3 Hz, 1H), 7.69
—7.65 (m, 2H), 7.56 (d, J =9.0 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H),
7.08 (s, 1H), 2.44 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 159.60, 157.71, 144.44, 138.89, 130.64, 129.79, 129.21,
129.04, 125.97, 122.60, 120.12, 117.30, 111.46, 101.58, 21.59 ppm.

GC-MS (m/z): 253.3 [M]".
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2-(3-methoxyphenyl)-5-nitrobenzofuran (4e): Compound 4e was synthesized by general
procedure A using 4-nitrophenol (1 mmol) and 3-methoxystyrene (0.5 mmol) as the substrates.
Pure product was obtained yellow solid in 75%. Isolated by column chromatography of the
crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

'H NMR (500 MHz, CDCls) 6 8.48 (d, J = 2.2 Hz, 1H), 8.22 - 8.19 (m, 1H), 7.58 (d, J=9.0
Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.9 Hz, 2H), 7.10 (s, 1H), 6.97 (dd, J = 8.0, 2.0
Hz, 1H), 3.90 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) 6 160.16, 159.19, 157.69, 144.46, 130.53, 130.25, 129.69,
120.27, 117.93, 117.40, 115.55, 111.55, 110.71, 102.04, 55.56 ppm.

GC-MS (m/z): 269.5 [M]".

5-cyano-2-phenylbenzofuran (4f): Compound 4f was synthesized by general procedure A
using 4-cyanophenol (1 mmol) and styrene (0.5 mmol) as the substrates. Pure product was
obtained as white solid in 88%. Isolated by column chromatography of the crude reaction
mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

!H NMR (400 MHz, CDCls) 6 7.87 (dd, J = 10.4, 9.1 Hz, 3H), 7.59 — 7.53 (m, 2H), 7.48 (t, J
=7.4Hz, 2H), 7.42 (dd, J = 8.4, 6.2 Hz, 1H), 7.03 (s, 1H) ppm.

13C NMR (126 MHz, CDCls) & 158.49, 156.57, 130.01, 129.68, 129.40, 129.11, 127.98,
125.86, 125.38, 119.59, 112.40, 107.02, 100.86 ppm.

GC-MS (m/z): 219.3 [M]".

CHO

5-cyano-2-(3-formylphenyl)benzofuran (4g): Compound 4g was synthesized by general
procedure A using 4-cyanophenol (1 mmol) and 3-vinylbenzaldhyde (0.5 mmol) as the
substrates. Pure product was obtained as light white solid in 66%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).
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IH NMR (500 MHz, CDCls) & 10.19 (s, 1H), 8.46 (s, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.04 (s,
1H), 8.00 (d, J = 7.6 Hz, 1H), 7.75 (t, J = 7.7 Hz, 1H), 7.72 — 7.66 (m, 2H), 7.33 (s, 1H) ppm.
13C NMR (126 MHz, CDCls) & 191.73, 156.90, 156.71, 137.19, 130.79, 130.72, 130.52,
129.95, 129.73, 128.60, 126.28, 126.16, 119.39, 112.64, 107.46, 102.23 ppm.

GC-MS (m/z): 247.5 [M]*.

2-(4-(tert-butyl)phenyl)benzofuran-5-carbonitrile (4h): Compound 4h was synthesized by
general procedure A using 4-cyanophenol (1 mmol) and 4—-tert-butyl styrene (0.5 mmol) as the
substrates. Pure product was obtained as light white solid in 60%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDCl3) 6 7.90 (d, J = 1.0 Hz, 1H), 7.81 — 7.79 (m, 2H), 7.58 (d, J = 8.5
Hz, 1H), 7.54 (dd, J = 8.5, 1.6 Hz, 1H), 7.52 — 7.49 (m, 2H), 7.01 (d, J = 0.7 Hz, 1H), 1.37 (s,
9H) ppm.

13C NMR (126 MHz, CDCls) & 158.78, 156.58, 153.15, 130.20, 127.78, 126.67, 126.09,
125.71, 125.24, 119.70, 112.35, 106.95, 100.25, 35.03, 31.34 ppm.

GC-MS (m/z): 275.5 [M]".

5-cyano-2-(4-chlorophenyl)benzofuran (4i): Compound 4i was synthesized by general
procedure A using 4-cyanophenol (1 mmol) and 4-chlorostyrene (0.5 mmol) as the substrates.
Pure product was obtained as light-yellow solid in 55%. Isolated by column chromatography
of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:2).
!H NMR (500 MHz, CDCls) 6 7.92 (s, 1H), 7.80 (d, J = 8.6 Hz, 2H), 7.61 — 7.56 (m, 2H),
7.46 (d, J = 8.6 Hz, 2H), 7.05 (s, 1H) ppm.

13C NMR (126 MHz, CDCls)  156.61, 135.66, 129.91, 129.45, 128.29, 127.94, 126.64,
126.02, 119.50, 112.50, 107.28, 101.34 ppm.

GC-MS (m/z): 253.6 [M]".
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4,7-dimethyl-2-phenylbenzofuran (4j): Compound 4j was synthesized by general procedure
A using 2,5-dimethylphenol (1 mmol) and styrene (0.5 mmol) as the substrates. Pure product
was obtained as colourless oil in 54%. Isolated by column chromatography of the crude
reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

!H NMR (500 MHz, CDCl3) 6 7.89 (dd, J = 8.4, 1.2 Hz, 2H), 7.48 — 7.43 (m, 2H), 7.37 - 7.32
(m, 1H), 7.04 (s, 1H), 6.96 (dd, J = 22.9, 7.4 Hz, 2H), 2.55 (s, 3H), 2.52 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 155.18, 153.76, 130.96, 128.88, 128.59, 128.42, 128.25,
125.23, 124.95, 123.26, 118.75, 100.45, 18.50, 14.97 ppm.

GC-MS (m/z): 222.6 [M]".

5-bromo-2-(4-chlorophenyl)benzofuran (4k): Compound 4k was synthesized by general
procedure A using 4-bromophenol (1 mmol) and 4-chlorostyrene (0.5 mmol) as the substrates.
Pure product was obtained as white solid in 66%. Isolated by column chromatography of the
crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

1H NMR (500 MHz, CDCl3) & 7.77 (d, J = 8.6 Hz, 2H), 7.70 (s, 1H), 7.43 (d, J = 8.6 Hz, 2H),
7.38 (s, 2H), 6.94 (s, 1H) ppm.

13C NMR (126 MHz, CDCls) & 156.26, 153.80, 135.03, 131.21, 129.29, 128.58, 127.56,
126.44, 123.73, 116.32, 112.79, 101.21, 77.41, 77.16, 76.91 ppm.

GC-MS (m/z): 307.2 [M]".

2-phenylnaphtho[2,1-b]furan (4l): Compound 4l was synthesized by general procedure A
using 2-naphthol (1 mmol) and styrene (0.5 mmol) as the substrates. Pure product was obtained
as light-yellow solid in 76%. Isolated by column chromatography of the crude reaction mixture
(silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:2).

'H NMR (500 MHz, CDCls) 6 8.18 (d, J = 8.2 Hz, 1H), 7.95 (dd, J = 7.8, 6.5 Hz, 3H), 7.75 —
7.69 (m, 2H), 7.63 — 7.58 (m, 1H), 7.54 — 7.52 (m, 1H), 7.49 (d, J = 7.3 Hz, 3H), 7.36 (t, J =
7.4 Hz, 1H) ppm.
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13C NMR (126 MHz, CDCls) & 156.06, 152.51, 131.81, 130.96, 130.49, 129.55, 129.04,
128.67, 126.18, 125.34, 124.89, 124.25, 118.38, 113.48, 100.35 ppm.
GC-MS (m/z): 244.7 [M]".

7-bromo-2-phenylnaphtho[2,1-b]furan (4m): Compound 4m was synthesized by general
procedure A using 6-bromo-2-naphthol (1 mmol) and styrene (0.5 mmol) as the substrates.
Pure product was obtained as creamy white solid in 90%. Isolated by column chromatography
of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).
'H NMR (400 MHz, CDCls) 6 8.10 (d, J = 1.9 Hz, 1H), 8.03 (d, J = 8.7 Hz, 1H), 7.93 - 7.90
(m, 2H), 7.71 (d, J = 9.0 Hz, 1H), 7.66 (dd, J = 8.7, 2.0 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H),
7.48 (dd, J = 8.8, 6.6 Hz, 3H), 7.37 (t, J = 7.4 Hz, 1H) ppm.

13C NMR (126 MHz, CDCl3) & 156.10, 152.54, 131.85, 130.99, 130.53, 129.58, 129.05,
128.69, 126.22, 125.35, 124.91, 124.80, 124.26, 118.39, 113.50, 100.37 ppm.

GC-MS (m/z): 323.8 [M]".

(0]

\F

7-bromo-2-(4-fluorophenyl)naphtho[2,1-b]furan (4n): Compound 4n was synthesized by
general procedure A using 6-bromo-2-naphthol (1 mmol) and 4-fluorostyrene (0.5 mmol) as
the substrates. Pure product was obtained as creamy white solid in 79%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDCls) 6 8.10 (d, J = 2.0 Hz, 1H), 8.02 (d, J = 8.7 Hz, 1H), 7.90 — 7.87
(m, 2H), 7.70 (dd, J = 8.9, 0.6 Hz, 1H), 7.66 (dd, J = 8.7, 2.0 Hz, 1H), 7.62 (d, J = 8.9 Hz,
1H), 7.41 (s, 1H), 7.17 (t, J = 8.7 Hz, 2H) ppm.

13C NMR (126 MHz, CDCl3) & 164.02, 155.20, 152.51, 131.86, 131.01, 129.63, 126.78,
126.72, 126.17, 125.31, 124.78, 124.31, 118.46, 116.27, 116.09, 113.43, 100.10 ppm.
GC-MS (m/z): 341.5 [M]".
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7-bromo-2-(2,4-dimethylphenyl)naphtho[2,1-b]furan (40): Compound 40 was synthesized
by general procedure A using 6-bromo-2-naphthol (1 mmol) and 2,4-dimethylstyrene (0.5
mmol) as the substrates. Pure product was obtained as creamy white solid in 87%. Isolated by
column chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum
ether: ethyl acetate 99:1).

'H NMR (400 MHz, CDCI3) 6 8.10 (d, J = 1.8 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.80 (d, J
=8.5Hz, 1H), 7.71 (d, J = 8.7 Hz, 1H), 7.65 (dd, J = 8.7, 1.8 Hz, 1H), 7.61 (d, J = 8.9 Hz,
1H), 7.29 (s, 1H), 7.15 (d, J = 6.5 Hz, 2H), 2.62 (s, 3H), 2.39 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 156.09, 151.90, 138.64, 135.56, 132.29, 131.74, 130.94,
129.44,128.11, 127.15, 127.09, 126.20, 125.32, 124.70, 123.95, 118.22, 113.43, 103.37, 22.09,
21.35 ppm.

GC-MS (m/z): 351.5 [M]".

O,N

0 ®

O

8-nitro-1,2,3,4-tetrahydrodibenzo[b,d]furan (4p): Compound 4p was synthesized by
general procedure A using 4-nitrophenol (1 mmol) and cyclohexene (0.5 mmol) as the
substrates. Pure product was obtained as light-yellow solid in 65%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (400 MHz, CDCls) 6 8.33 (d, J = 2.3 Hz, 1H), 8.14 (dd, J = 8.9, 2.4 Hz, 1H), 7.44
(d, J=9.0 Hz, 1H), 2.77 (tt, J = 6.3, 1.9 Hz, 2H), 2.66 (tt, J = 6.0, 2.0 Hz, 2H), 2.01 - 1.94
(m, 2H), 1.91 —1.85 (m, 2H) ppm.

13C NMR (101 MHz, CDCls) $ 157.98, 157.58, 129.51, 119.20, 115.07, 114.13, 111.07,
23.57,22.79, 22.47, 20.36 ppm.

GC-MS (m/z): 217.1 [M]".

Q

2-methyl-5-phenylbenzofuran (4q): Compound 4q was synthesized by general procedure A
using 4-phenylphenol (1 mmol) and allyl chloride (0.5 mmol) as the substrates. Pure product

S16



was obtained as white solid in 58%. Isolated by column chromatography of the crude reaction
mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:2).

'H NMR (400 MHz, CDCls) 6 7.68 (s, 1H), 7.64 (d, J = 1.4 Hz, 1H), 7.62 (s, 1H), 7.48 —
7.43 (m, 4H), 7.34 (t, J = 7.4 Hz, 1H), 6.43 (s, 1H), 2.49 (d, J = 0.8 Hz, 3H) ppm.

13C NMR (126 MHz, CDCls)  156.30, 154.54, 142.04, 136.27, 129.88, 128.83, 127.56,
126.86, 122.87, 118.81, 110.84, 102.94, 14.27 ppm.

GC-MS (m/z): 208.6 [M]".

7-bromo -2-methylnaphtho[2,1-b]furan (4r): Compound 4r was synthesized by general
procedure A using 6-bromo-2-naphthol (1 mmol) and allyl bromide (0.5 mmol) as the
substrates. Pure product was obtained as orange semi solid in 61%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:2).

'H NMR (400 MHz, CDCls) 6 8.07 (d, J= 1.9 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.61 (d, J =
1.5 Hz, 1H), 7.59 (s, 1H), 7.53 (d, J = 8.9 Hz, 1H), 6.82 (s, 1H), 2.56 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 155.45, 152.13, 131.63, 130.80, 129.21, 125.96, 125.32,
124.46, 122.91, 117.94, 113.24, 101.77, 14.35 ppm.

GC-MS (m/z): 261.2 [M]".

2.14 a-Syn-PdNPs Catalyzed Coumarin Synthesis from corresponding Phenols and
acrylates (General Procedure B). To a dried screw cap reaction tube that charged with a
magnetic stir-bar, phenol (1 mmol), «-Syn-PdNPs (10 mol%), 1,10-phenanthroline
monohydrate (20 mol%), V20s (1.25 mmol), NaOAc (0.75 mmol), Molecular sieves (44, 130
mg) and acrylate (0.5 mmol) were added. Then 1,2-dichloroethane (DCE) solvent (4 mL) was
added and the reaction tube was closed with the screw cap. The reaction tube was heated at 110
°C for 24 h under vigorous stirring. Then the reaction mixture was cooled and quenched with
ethyl acetate. The mixture was filtered through celite pad and evaporated under reduced
pressure. The residue was purified by column chromatography using silica gel (100-200 mesh
size) and petroleum-ether/ ethyl acetate as the eluent.

Oo” 0O

6-methoxy-2H-chromen-2-one (4s): Compound 4s was synthesized by general procedure B
using 4-methoxyphenol (1 mmol) and methylacrylate (0.5 mmol) as the substrates. Pure
product was obtained as white solid in 82%. Isolated by column chromatography of the crude
reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 80:20).
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IH NMR (400 MHz, CDCl3) 8 7.62 (d, J = 9.5 Hz, 1H), 7.22 (d, J = 9.5 Hz, 1H), 7.06 (dd, J
=9.1, 2.9 Hz, 1H), 6.87 (d, J = 2.9 Hz, 1H), 6.38 (d, J = 9.5 Hz, 1H), 3.81 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 161.12, 156.21, 148.59, 143.33, 119.58, 119.29, 118.00,
117.21, 110.16, 55.96 ppm.

GC-MS (m/z): 176.6 [M]".

0" 0O

6-nitro-2H-chromen-2-one (4t): Compound 4t was synthesized by general procedure B using
4-nitrophenol (1 mmol) and methylacrylate (0.5 mmol) as the substrates. Pure product was
obtained as white solid in 65%. Isolated by column chromatography of the crude reaction
mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 80:20).

IH NMR (400 MHz, CDCls) 6 8.44 (d, J = 2.5 Hz, 1H), 8.41 (dd, J = 9.0, 2.6 Hz, 1H), 7.80
(d, J = 9.7 Hz, 1H), 7.47 (d, J = 9.0 Hz, 1H), 6.59 (d, J = 9.7 Hz, 1H) ppm.

13C NMR (126 MHz, CDCls) & 158.97, 157.72, 144.22, 142.33, 126.79, 123.89, 119.02,
118.95, 118.26 ppm.

GC-MS (m/z): 191.2 [M]".

2.15 a-Syn-PdNPs Catalyzed N-Arylindole synthesis from corresponding diphenylamine
and styrenes (General Procedure C). To a dried screw cap reaction tube that charged with a
magnetic stir-bar, amine (1 mmol), a-Syn-PdNPs (0.025 mmol) and 1,10-phenanthroline
monohydrate (0.05 mmol), CuOAc (2 equiv) and olefin (0.25 mmol) were added. Then 1,2-
dichloroethane (DCE) solvent (4 mL) was added and the reaction tube was closed with the
screw cap. The reaction tube was heated at 130 °C for 24 h under vigorous stirring. Then the
reaction mixture was cooled and quenched with ethyl acetate. After centrifuging, the reaction
mixture was filtered (repeated thrice by washing with ethyl acetate) and combined organic
portions were evaporated under reduced pressure. The residue was purified by column
chromatography using silica gel (100-200 mesh size) and petroleum-ether/ ethyl acetate as the
eluent.

S

1,2-diphenyl-1H-indole (5a): Compound 5a was synthesized by general procedure C using
diphenylamine (1 mmol) and styrene (0.25 mmol) as the substrates. Pure product was obtained
as white crystalline solid in 87%. Isolated by column chromatography of the crude reaction
mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).
'H NMR (500 MHz, CDClz3) 6 7.61 — 7.59 (m, 1H), 7.33 — 7.29 (m, 2H), 7.26 — 7.23 (m, 1H),
7.22-7.13 (m, 8H), 7.11 — 7.07 (m, 2H), 6.72 (d, J = 0.6 Hz, 1H) ppm.

S18



13C NMR (126 MHz, CDCl3) & 140.87, 139.14, 138.65, 132.67, 129.38, 129.04, 128.40,
128.28, 128.18, 127.42, 127.32, 122.47, 120.84, 120.66, 110.76, 103.83 ppm.
GC-MS (m/z): 269.7 [M]".

()
EhMe

1-phenyl-2-p-tolyl-1H-indole (5b): Compound 5b was synthesized by general procedure C
using diphenylamine (1 mmol) and 4-methylstyrene (0.25 mmol) as the substrates. Pure
product was obtained as white crystalline solid in 72%. Isolated by column chromatography of
the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl acetate 99:1).

'H NMR (400 MHz, CDClz3) 6 7.69 — 7.66 (m, 1H), 7.44 — 7.40 (m, 2H), 7.37 — 7.33 (m, 1H),
7.30-7.27 (m, 2H), 7.25 (d, J = 1.2 Hz, 1H), 7.18 — 7.15 (m, 4H), 7.05 (d, J = 7.9 Hz, 2H),
6.77 (d, J = 0.7 Hz, 1H), 2.32 (s, 3H) ppm.

13C NMR (126 MHz, CDCls) & 141.02, 139.08, 138.77, 137.28, 129.78, 129.38, 129.04,
128.92, 128.45, 128.23, 127.29, 122.27, 120.77, 120.53, 110.70, 103.38, 21.33 ppm.

GC-MS (m/z): 283.6 [M]".

(0
b
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2-(4-fluorophenyl)-1-phenyl-1H-indole (5c): Compound 5c was synthesized by general
procedure C using diphenylamine (1 mmol) and 4-fluorostyrene (0.25 mmol) as the substrates.
Pure product was obtained as white crystalline solid in 65%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDCl3) 8 7.75 - 7.72 (m, 1H), 7.46 (t, J=7.5Hz, 2H), 7.39 (t, )= 7.4
Hz, 1H), 7.34 (dd, J = 6.0, 3.2 Hz, 1H), 7.28 (d, J = 8.2 Hz, 3H), 7.23 (dd, J = 6.0, 3.1 Hz,
2H), 6.98 (t, J = 8.7 Hz, 2H), 6.81 (s, 1H) ppm.

13C NMR (126 MHz, CDCls)  163.25, 161.29, 139.82, 139.07, 138.46, 130.73, 130.66,
129.47, 128.85, 128.82, 128.32, 128.18, 127.46, 122.57, 120.93, 120.65, 115.44, 115.27,
110.76, 103.74 ppm.

GC-MS (m/z): 287.3 [M]".

\ (D
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2-(4-chlorophenyl)-1-phenyl-1H-indole (5d): Compound 5d was synthesized by general
procedure C using diphenylamine (1 mmol) and 4-chlorostyrene (0.25 mmol) as the substrates.
Pure product was obtained as white crystalline solid in 67% vyield. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

IH NMR (500 MHz, CDCls) & 7.72 (dd, J = 6.1, 2.7 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.40
(dd, J = 8.4, 6.3 Hz, 1H), 7.33 — 7.31 (m, 1H), 7.28 (dd, J = 5.4, 3.2 Hz, 2H), 7.25 — 7.21 (m,
6H), 6.84 (s, 1H) ppm.

13C NMR (101 MHz, CDCl3) & 139.54, 139.22, 138.38, 133.44, 131.15, 130.14, 129.55,

128.56, 128.26, 128.14, 127.55, 122.76, 121.00, 120.75, 110.79, 104.12 ppm.
GC-MS (m/z): 303.9 [M]".

®a

4-(1-phenyl-1H-indol-2-yl)benzonitrile (5e): Compound 5e was synthesized by general
procedure C using diphenylamine (1 mmol) and 4-vinylbenzonitrile (0.25 mmol) as the
substrates. Pure product was obtained as white crystalline solid in 59%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:3).

'H NMR (400 MHz, CDCl3) 6 7.73 - 7.70 (m, 1H), 7.53 — 7.50 (m, 2H), 7.48 — 7.44 (m, 2H),
7.43 —7.39 (m, 1H), 7.37 — 7.34 (m, 2H), 7.31 — 7.28 (m, 1H), 7.25 (d, J = 1.5 Hz, 1H), 7.24
(d, J=1.5Hz, 1H), 7.23 - 7.20 (m, 1H), 6.92 (d, J = 0.7 Hz, 1H) ppm.

13C NMR (126 MHz, CDCls) & 139.78, 138.50, 138.16, 137.16, 132.12, 129.78, 129.07,
128.06, 127.92, 123.61, 121.34, 121.17, 118.94, 110.97, 110.67, 105.84 ppm.

GC-MS (m/z): 294.6 [M]".

D
O
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2-(4-tert-butylphenyl)-1-phenyl-1H-indole (5f): Compound was 5f synthesized by general
procedure B using diphenylamine (1 mmol) and 4-tert-butylstyrene (0.25 mmol) as the
substrates. Pure product was obtained as white crystalline solid in 61%. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (400 MHz, CDCl3) 6 7.76 — 7.72 (m, 1H), 7.49 — 7.45 (m, 2H), 7.42 — 7.38 (m, 1H),
7.32 (dd, J=8.9, 3.9 Hz, 5H), 7.27 (d, J = 1.9 Hz, 1H), 7.25 - 7.21 (m, 3H), 6.85 (s, 1H), 1.35
(s, 9H) ppm.

13C NMR (126 MHz, CDCls) & 150.40, 140.93, 139.18, 138.83, 129.69, 129.36, 128.58,
128.47, 128.27, 127.30, 125.24, 122.26, 120.75, 120.53, 110.70, 103.48, 34.66, 31.40 ppm.
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GC-MS (m/z): 325.8 [M]".

O
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2-(2-chlorophenyl)-1-phenyl-1H-indole (5g): Compound 5g was synthesized by general
procedure B using diphenylamine (1 mmol) and 3-chlorostyrene (0.25 mmol) as the substrates.
Pure product was obtained as white crystalline solid in 67% yield. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDClz)  7.74 - 7.71 (m, 1H), 7.40 — 7.36 (m, 2H), 7.34 (dt, J = 6.6, 1.1
Hz, 2H), 7.30 — 7.27 (m, 2H), 7.25 — 7.21 (m, 5H), 7.18 (td, J = 7.4, 1.4 Hz, 1H), 6.79 (s, 1H)
ppm.

13C NMR (101 MHz, CDCls) 6 138.13, 137.93, 137.52, 134.53, 133.02, 132.19, 129.77,
129.53, 129.08, 128.10, 127.65, 127.07, 126.36, 122.64, 120.94, 120.79, 110.77, 105.45 ppm.
GC-MS (m/z): 303.9 [M]".

\Me
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2-mesityl-1-phenyl-1H-indole (5h): Compound 5h was synthesized by general procedure B
using diphenylamine (1 mmol) and 2,4,6-trimethylstyrene (0.25 mmol) as the substrates. Pure
product was obtained as white crystalline solid in 65% yield. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (500 MHz, CDClz) 8 7.70 — 7.68 (m, 1H), 7.40 — 7.38 (m, 1H), 7.32 — 7.28 (m, 2H),
7.25-7.21 (m, 1H), 7.20 — 7.16 (m, 4H), 6.82 (s, 2H), 6.51 (d, J = 0.7 Hz, 1H), 2.26 (s, 3H),
2.04 (s, 6H) ppm.

13C NMR (126 MHz, CDCls) & 138.96, 138.31, 138.25, 138.14, 129.57, 128.96, 128.70,
128.02, 126.78, 121.71, 120.50, 120.45, 110.74, 103.97, 29.85, 21.26, 20.76 ppm.

GC-MS (m/z): 311.4 [M]".

2-(naphthalen-2-yl)-1-phenyl-1H-indole (5i): Compound 5i was synthesized by general
procedure B using diphenylamine (1 mmol) and 2-vinylnaphthalene (0.25 mmol) as the
substrates. Pure product was obtained as white crystalline solid in 69% yield. Isolated by
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column chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum
ether: ethyl acetate 99:1).

'H NMR (500 MHz, CDCls) 6 7.80 — 7.76 (m, 2H), 7.74 — 7.67 (m, 3H), 7.47 — 7.44 (m,
2H), 7.43 —7.38 (m, 2H), 7.37 — 7.33 (m, 3H), 7.32 — 7.30 (m, 2H), 7.23 — 7.20 (m, 2H), 6.94
(d, J=0.7 Hz, 1H) ppm.

13C NMR (101 MHz, CDCls) & 140.81, 139.28, 138.70, 133.31, 132.53, 130.14, 129.47,
128.46, 128.24, 128.20, 128.00, 127.74, 127.39, 126.87, 126.38, 126.28, 122.59, 120.91,
120.72, 110.79, 104.33 ppm.

GC-MS (m/z): 319.5 [M]".

Me

5-methyl-1,2-di-p-tolyl-1H-indole (5j): Compound 5j was synthesized by general procedure
B using di-p-tolylamine (1 mmol) and 4-methylstyrene (0.25 mmol) as the substrates. Pure
product was obtained as white crystalline solid in 63% yield. Isolated by column
chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum ether: ethyl
acetate 99:1).

'H NMR (400 MHz, CDCl3) 6 7.46 (s, 1H), 7.23 - 7.18 (m, 3H), 7.17 — 7.12 (m, 4H), 7.06
(d, J=8.0 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 6.69 (s, 1H), 2.47 (s, 3H), 2.41 (s, 3H), 2.32 (s,
3H) ppm.

13C NMR (101 MHz, CDCls) 6 141.04, 137.68, 137.05, 136.92, 136.33, 130.03, 129.96,
129.89, 128.99, 128.83, 128.62, 127.88, 123.72, 120.12, 110.44, 102.72, 21.53, 21.33, 21.30

ppm.
GC-MS (m/z): 311.7 [M]".

Me

2-(4-fluorophenyl)-5-methyl-1-(p-tolyl)-1H-indole (5k): Compound 5k was synthesized by
general procedure B using di-p-tolylamine (1 mmol) and 4-fluoroostyrene (0.25 mmol) as the
substrates. Pure product was obtained as white crystalline solid in 60% yield. Isolated by
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column chromatography of the crude reaction mixture (silica gel, mesh 100-200; petroleum
ether: ethyl acetate 99:1).

'H NMR (400 MHz, CDCls) 8 7.47 (s, 1H), 7.27 — 7.21 (m, 4H), 7.17 (d, J = 8.4 Hz, 1H),
7.13-7.10 (m, 2H), 7.02 (dd, J = 8.4, 1.4 Hz, 1H), 6.98 — 6.93 (m, 2H), 6.68 (s, 1H), 2.49 (s,
3H), 2.42 (s, 3H).

13C NMR (101 MHz, CDCls) 6 163.42, 160.96, 139.88, 137.65, 137.17, 136.01, 130.65,
130.57, 130.06, 129.08, 129.05, 128.47, 127.86, 124.02, 120.22, 115.40, 115.19, 110.51,
103.03, 21.53, 21.29.

GC-MS (m/z): 315.6 [M]".

2.16 Catalyst recovering and recycling. The recyclability of the catalyst was examined for
both benzofuran and N-arylindole synthesis under standard reaction conditions. The isolation
of the a-Syn-PdNPs catalyst was attempted after a reaction between 4-nitrophenol and styrene.
After completion of the first cycle (95% GC yield), the reaction mixture was cooled to room
temperature, the catalyst was recovered by centrifuging the reaction mixture and filtration.
After vacuum drying of the catalyst was used in the 2nd run under the same reaction conditions
as the first (92% yield). Run 3 to 4 took a slightly longer time for completion (30h). Good
catalytic activity remained up to the 4 cycles.

After first cycle, the filtrate was subjected to ICP-AES measurement to estimate the
amount of Pd leached out from catalyst. The ICP measurement revealed that the presence of
negligible amount of Pd in the filtrate.

Further, the recovery of the catalyst was also tested from the reaction between
diphenylamine and styrene. The catalyst was recovered by simple filtration and reused up to 3
cycles. All these results revealed the stability of the nanocomposite and firm deposition of
PdNPs on the a-Syn fibril.

Reaction conditions for the synthesis of benzofuran:

Run 1: 4-nitrophenol (1 mmol) and styrene (0.5 mmol) using a-Syn-PdNPs (7.5 mol %), 1,10-
phenanthroline (15 mol %), V20s (2.5 equiv), and NaOAc (1.5 equiv) in DCE (4 mL) at 110 °C for 24
h. After reaction completion, the mixture was cooled, centrifuged and filtered (GC Yield, 95%).

Run 2: 4-nitrophenol (1 mmol) and styrene (0.5 mmol) was loaded in the same reaction tube (above
mentioned, Run 1) and DCE (4 mL) was added and performed reaction at 110 °C for 24 h (GC Yield,
92%).

Run 3: 4-nitrophenol (1 mmol) and styrene (0.5 mmol), along with 1,10-phenanthroline (15 mol %),
V>0s (1 equiv), and NaOAc (0.5 equiv) was added in DCE (4 mL) (in above mentioned, Run 2) and
performed reaction at 110 °C for 30 h (GC Yield, 92%).

Run 4: 4-nitrophenol (1 equiv), styrene (0.5 equiv) was added in DCE (4 mL) (in above mentioned,
Run 2) and performed reaction at 110 °C for 30 h (GC Yield, 90%).

Reaction conditions for the synthesis of N-aryindole:
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Run 1: diphenylamine (1 mmol), styrene (0.25 mmol), a-Syn-PdNPs (10 mol%), 1,10-phenanthroline
(20 mol%) and CuOAc (2 equiv) in 4 mL CICH,CH.CI (DCE) at 130 °C for 24 h. After reaction
completion, the mixture was cooled, centrifuged and filtered (GC Yield, 92%).

Run 2: Diphenylamine (1 mmol), styrene (0.25 mmol) were loaded in the same reaction tube (above
mentioned, Run 1) and DCE (4 mL) was added and performed reaction at 130 °C for 24 hours (GC
Yield, 89%).

Run 3: Diphenylamine (1 mmol) and styrene (0.25 mmol) along with CuOAc (1 equiv) were added in
DCE (4 mL) (in above mentioned, Run 2) and performed reaction at 130 °C for 30 hours (GC Yield,
86%).

CL,
l‘;lH
Ph

Yield of Benzofuran Yield of N-arylindole

Run 1: 95% Run 1: 92%
Run 2: 92% Run 2: 89%
Run 3: 92% O Run 3: 86%
Run 4: 90% ) O

N

Ph

Benzofuran N-Arylindole

Figure S5. a-Syn-PdNPs shown to be recyclable. The composite was recovered after each
reaction cycle and reused for next reaction cycle.

Table S1: Yield of benzofuran and Pd nanoparticle size in different cycles

O5N H | a-Syn-PdNPs
\©: + 1,10-Phenanthroline >
OH V205, NaOAc

CICH,CH,CI, 110 °C, 24h

Run/Cycle Yield of benzofuran 4a (%) Pd nanoparticle size (nm)
1 95 3
2 92 34
3 92 3.6
4 90 3.9
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Figure S6. Particle size distribution histogram of the recovered catalyst up to four cycles
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3. Supporting Figures:
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Figure S7. TEM characterization of Pd, Cu, Pt, Au and Ag nanocomposite of a-Syn-fibrils. Visual
observation of nanocomposites (a,f,k,p,u). Morphology of different metal nanocomposites at low
magnification (b,g,1,q,v) and high magnification (c,h,m,r,w) with a-Syn fibrils. Electron diffraction
pattern of nanocomposite (d,i,n,s,x). Size distribution of Pd, Cu, Pt, Au and Ag nanoparticles in their
respective nanocomposite (e,j,0,t,y).
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Figure S8. Line mapping on single fibril containing a-Syn-PdNPs showing abundance of carbon,
nitrogen, oxygen and pallidum on single fibril.
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Figure S9. a) XPS survey spectra of a-Syn fibril and a-Syn-PdNPs confirming presence of palladium
in composite. C, N and O peaks were observed from fibril whereas additional Pd peaks was observed
in a-Syn-PdNPs composite. b) Thermogavimatric analysis of a-Syn fibril and a-Syn-PdNPs from 25°
Cto800°C.
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Figure S10. Morphology of different catalyst as visualized by TEM. a-Syn-PdNPs monomer (a, b),
sonicated a-Syn-PdNPs (c, d) and Proteinase K digested a-Syn-PdNPs (e, f).

a-Syn-PdNPS fibril-after 3rd cycle INPSibrilafter 3rdcyele

Figure S11. Morphology of recovered a-Syn-PdNPs after 3 cycle from N-arylindole synthesis
observed by TEM.
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Figure S12: Circular Dichroism (CD) spectra showing negative band at 218 nm for both o-Syn fibril
and a-Syn-PdNPs which correspond to 3-sheet structure of protein/amyloid. Recovered o-Syn-PdNPs
(after four cycle) also shows similar pattern with a slightly reduced intensity.

S30



4. Supporting Tables

Table S2: Review of reported palladium nanoparticle based electrooxidation of ethanol

Catalysts Electrolyte Pd loading ECSA Mass References
2 2 Current
(ng/em?) | (M?/gpa) density
(A/mgPd cm2)
a-Syn-PdNPs IMKOH+1M 9.5 160.6 9.4 This Work
Ethanol
PdCo nanotube 1 M KOH + 1M 23.4 50.13 1.15 10
Ethanol
PdsoAgso I1MKOH+1M 1.25 32.81 1.97 1
EtOH
Pd7/Rus IMKOH+1 M 56.62 1.587 1.15 12
bimetallic NaOH
nanodendrites
PdPt nanowires 1MKOH+05M 71.4 - 0.94 13
NaOH
Pd-PEDOT/GE | 1MKOH+1M 86 13.2 0.458 14
nanocomposites Ethanol
Pd/C 1IMKOH+1M - 39 0.019 15
Ethanol

Table S3. Optimization by varying oxidant for the synthesis of benzofuran

(Reactions were carried out by having styrene as a limiting reagent).

a-Syn-PdNPs (5 mol%)

1,10-Phen (10 mol%)

Oxidant (1 equiv)
NaOAc (3 equiv)

0.2 mmol 0.1 mmol CICH,CH,CI, 110 °C, 24h
Entry Oxidant (1 equiv) GC Yield (%)
1 Cu(OAc), H,0 12
2 1,4-benzoquinone 28
3 Ag,CO, 15
4 AgOAc 8
5 Cu,0 10
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6 CuO 25
7 CuOAc 42
8 V,0; 48
9 K,S,0, 20
10 Oxone 5

1 Ag,S0, 28
12 1,4-Naphthoquinone 8

Table S4. Optimization of solvent for the synthesis of benzofuran

O,N H 0.-Syn-PdNPs (5 mol%)
\CE + | 1,10-Phen (10 mol%)
>
OH V,05 (1 equiv)
NaOAc (3 equiv)
0.2 mmol 0.1 mmol air, Solvent (1 mL)
110 °C, 24h
Entry Solvent (1 mL) GC Yield (%)
1 DCE 48
2 H,O 25
3 CH,CN 12
4 1,4-dioxane n.d.
5 Toluene 28
6 AmOH 10
7 TFE n.d.
8 HFIP 20
9 DMF 8
10 DMSO 15
11 THF n.d.
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12

EtOH

n.d.

13

M-Xylene

5

n.d. means not detected

Table S5. Optimization by varying base for the synthesis of benzofuran

OZN\©1H
OH

o-Syn-PdNPs (5 mol%)
+ | 1,10-Phen (10 mol%)

V205 (1 eqUiV)
Base (3 equiv)

0.2 mmol 0.1 mmol air, DCE (1 mL)
110 °C, 24h
Entry Base GC Yield (%)
1 Nil 15
2 NaOAc 48
3 NaHCO, 42
4 Na HPO, 23
5 KHCO, 40
6 NaBu 28
7 KH,PO, 15
8 NH,OAc nd
9 DBU 30

Table S6. Optimization by varying the amount of catalyst and ligand

OH

o-Syn-PdNPs (xx mol%)

+ I 1,10-Phen (xx mol%)
’

V5,05 (1 equiv)
NaOAc (3 equiv)

0.2 mmol 0.1 mmol air, DCE (1 mL)
110 °C, 24h
Amount of catalyst . . o
Entry (a-Syn-PdNPs) Amount of ligand GC Yield (%)
1 5 mol% 10 mol% 48
2 7.5 mol% 15 mol% 59
3 10 mol% 20 mol% 59
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4 15 mol% 30 mol% 42

5 20 mol% 30 mol% 38

Table S7. Ligand optimization for the synthesis of benzofuran

o-Syn-PdNPs (7.5 mol%) O.N

O,N H | )
H 0,
\@[ N Ligand (15 mol%) -
OH V505 (1 equiv) \

NaOAc (3 equiv) (0) O
_____ 0.2mmol _ __O1mmol  airDCE 110°C,24h 7.
Ligand screening
— =
No ligand /_\ N\ / < Q
N N N Me—NH HN—Me
10% 17% n.d. n.d.
Me O
H | H
Me HsC N
Me/N\/\N,Me Me/N\/\I\lj 3 \n/ \)J\OH
10% nd. Me O 15%
H5C CHs3 Ph Ph
Ve S Y WA e
—N N= —N N= =N N=—
44% 59% 36%

Table S8. Optimization by varying the amount of oxidant and base for the synthesis of
benzofuran

a-Syn-PdNPs (7.5 mol%) O,N

o,N H
\@[ + |l 1,10-Phen (15 mol%)
v o
OH

V,05 (X equiv)
NaOAc (x equiv)
air, DCE (1 mL)

0.2 mmol 0.1 mmol 110 °C, 24h
Entry | Equivalent of NaOAc Equivalent of V,0, GC Yield (%)
1 1.0 1.0 42
2 2.0 1.0 47
3 3.0 1.0 59
4 3.0 1.5 65
5 3.0 2.0 84
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Table S9. Time optimization for the synthesis of benzofuran

O,N H a-Syn-PdNPs (7.5 mol%)
\@[ + I 1,10-Phen (15 mol%)
r
OH V5,05 (2.5 equiv)
NaOAc (1.5 equiv)

air, DCE (1 mL)

0.2 mmol 0.1 mmol 110 °C, t h
Entry Time (h) GC Yield (%)
1 12 58
2 24 95
3 36 83
4 48 52

Table S10. Temperature optimization for the synthesis of benzofuran

O,N H a-Syn-PdNPs (7.5 mol%)
\©: + I 1,10-Phen (15 mol%)
OH V205 (25 eqUiV)
NaOAc (1.5 equiv)

air, DCE (1 mL)

0.2 mmol 0.1 mmol T°C, 24 h
Entry Temperature (°C) GC Yield (%)
1 70 20
2 80 28
3 90 40
4 100 87
5 110 95
6 120 90
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130

72

(Reactions were carried out by having styrene as a limiting reagent).

CL
NH

I
Ph

e

o-Syn-Pd NPs (7.5 mol%)

1,10-Phen (15 mol%)
'

Cu(OAc), H,0 (1 equiv)

Table S11. Optimization by varying solvent for the synthesis of N-arylindole

(1

\
Ph

>

0.2 mmol 0.1 mmol Solvent (1 mL), 110°C, 24h
Entry Solvent (1 mL) GC Yield (%)
1 DCE 52
2 HFIP 73
3 TFE 40
4 Toluene 18
5 Acetic acid 30
6 Pivalic acid 12
7 1,4-dioxane nd.
8 DMF n.d.
9 THF 3
10 DMSO 15
1 AmOH n.d.
12 HO 15
13 CH,CN 8
14 M-Xylene nd.
15 MeOH 6
16 NMP 12
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Table S12. Optimization by varying oxidant for the synthesis of N-arylindole

H I a-Syn-Pd NPs (7.5 mol%)
©i + 1,10-Phen (15 mol%) \
>
y av
Ph

Oxidant (1 equiv)

0.2 mmoIlTh 0.1 mmol DCE (1 mL), 110°C, 24h
Entry Oxidant GC Yield (%)

1 Cu(OAc),. H,0 52
2 CuOAc 59
3 Ag,CO, nd.
4 AgOAc n.d.
5 Cu,0 6

6 CuO 13
7 Ag,SO, 15
8 V,0q 22
9 K,S,04 n.d.
10 Oxone n.d.
11 p-benzoquinone n.d.
12 PhI(OAc), n.d.
13 Nil n.d.
14 0, 47

Table S13. Temperature optimization for the synthesis of N-arylindole

H | o.-Syn-Pd NPs (7.5 mol%)
+ 1,10-Phen (15 mol%) . \ I

NH CuOAc (1 equiv) N
Ph DCE (1 mL), T°C, 24h Ph
0.2 mmol 0.1 mmol

S37



Entry Temperature GC Yield (%)
1 90 40
2 100 51
3 110 59
4 120 67
5 130 72
6 140 69

Table S14. Time optimization for the synthesis of N-arylindole
a-Syn-Pd NPs (7.5 mol%)
1,10-Phen (15 mol%) .

"
CL -
NH CuOAc (1 equiv)

|
Ph DCE (1 mL), 130°C, th

Q) >

Ph
0.2 mmol 0.1 mmol
Entry Time GC Yield (%)
| 12 h 32
2 24 h 72
3 36 h 63
4 48h 56

Table S15. Amount of Catalyst for the synthesis of N-arylindole

H
CL, - !
NH

a-Syn-Pd NPs (xx mol%)
1,10-Phen (xx mol%)
>

CuOAc (1 equiv)

'}‘\ D

|
Ph DCE (1 mL), 130°C, 24h Ph
0.2 mmol 0.1 mmol
Amount of catalyst . . o
Entry (a-Syn-PdNPs) Amount of ligand GC Yield (%)

1 5 mol% 10 mol% 48
2 7.5 mol% 15 mol% 72
3 10 mol% 20 mol% 85
4 15 mol% 30 mol% 81
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20 mol%

30 mol%

74

Table S16. Equivalent of Diaryl amine and Styrene for the synthesis of N-arylindole

CL.
NH

.

o-Syn-Pd NPs (10 mol%)
1,10-Phen (20 mol%) -

(2

) CuOAc (XX equiv) l}l O
Ph _ DCE (1 mL), 130°C, 24h Ph
(XX equiv) (XX equiv)
diphenylamine Styrene equivalent of
Entry pheny y anhyd. GC Yield (%)
(mmol) (mmol) CuOAc

1 0.2 0.2 1 42

2 0.2 0.1 1 85

3 0.3 0.1 2 87

4 0.4 0.1 2 92
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6. NMR spectra of products (Benzofuran and N-arylindole)

'H and *C NMR of 5-nitro-2-phenylbenzofuran (4a)
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tro-2-(4-methoxyphenyl)benzofuran (4b)
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IH and 3C NMR of 5
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IH and ¥C NMR of 2-(4-(tert-butyl)phenyl)-5-nitrobenzofuran (4c)
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tro-2-(3-methylphenyl)benzofuran (4d)

-ni

IH and 3C NMR of 5
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IH and ¥C NMR of 2-(3-methoxyphenyl)-5-nitrobenzofuran (4e)

DM-J2-17-1H
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IH and ¥C NMR of 5-cyano-2-phenylbenzofuran (4g)
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IH and ¥C NMR of 5-cyano-2-(3-formylphenyl)benzofuran (4h)
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IH and ¥C NMR of 2-(4-(tert-butyl)phenyl)benzofuran-5-carbonitrile (4i)
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'H and *C NMR of 5-cyano-2-(4-chlorophenyl)benzofuran (4j)

DM-12-53-2-1H
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IH and 3C NMR of 4,7-dimethyl-2-phenylbenzofuran (4k)
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'H and ¥ C NMR of 5-bromo-2-(4-chlorophenyl)benzofuran (4l)
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'H and *C NMR of 2-phenylnaphtho[2,1-b]furan (4m)
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'H and *C NMR of 7-bromo-2-phenylnaphtho[2,1-b]furan (4n)
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'H and *C NMR of 7-bromo-2-(4-fluorophenyl)naphtho[2,1-b]furan (40)
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IH and ¥C NMR of 7-bromo-2-(2,4-dimethylphenyl)naphtho[2,1-b]furan (4p)
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tro-1,2,3,4-tetrahydrodibenzo[b,d]furan (4q)
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IH and ¥C NMR of 2-methyl-5-phenylbenzofuran (4r)
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IH and ¥C NMR of 7-bromo -2-methylnaphtho[2,1-b]furan (4s)
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IH and ¥C NMR of 6-methoxy-2H-chromen-2-one (4t)
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tro-2H-chromen-2-one (4u)

-ni

IH and 3C NMR of 6
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IH and ¥C NMR of 1,2-diphenyl-1H-indole (5a)
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IH and ¥C NMR of 1-phenyl-2-p-tolyl-1H-indole (5b)
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IH and ¥C NMR of 2-(4-fluorophenyl)-1-phenyl-1H-indole (5c)
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IH and ¥C NMR of 2-(4-chlorophenyl)-1-phenyl-1H-indole (5d)
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IH and ¥C NMR of 4-(1-phenyl-1H-indol-2-yl)benzonitrile (5e)
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IH and ¥C NMR of 2-(4-tert-butylphenyl)-1-phenyl-1H-indole (5f)
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IH and ¥C NMR of 2-(2-chlorophenyl)-1-phenyl-1H-indole (5g)
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IH and ¥C NMR of 2-mesityl-1-phenyl-1H-indole (5h)
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IH and ¥C NMR of 2-(naphthalen-2-yl)-1-phenyl-1H-indole (5i
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IH and ¥C NMR of 5-methyl-1,2-di-p-tolyl-1H-indole (5j)
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1H and 3C NMR of 2-(4-fluorophenyl)-5-methyl-1-(p-tolyl)-1H-indole (5k)
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