Insights into the Interfacial Carrier Behaviour of Copper Ferrite (CuFe₂O₄) Photoanodes for Solar Water Oxidation

Yongpeng Liu, Florian Le Formal, Florent Boudoire, Liang Yao, Kevin Sivula,* and Néstor Guijarro*

Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland

E-mail: kevin.sivula@epfl.ch; nestor.guijarro@epfl.ch

List of Figures

Figure S1:	Top-view and cross-sectional SEM image			•	•		S2
Figure S2:	Raman spectrum	•	•		•		S3
Figure S3:	UV-Vis absorption spectrum	•			•	•	S4
Figure S4:	Photocurrent under LED illumination	•	•		•	•	S4
Figure S5:	Mean transit time for photogenerated electrons (τ_d)	•	•		•		S5
Figure S6:	Substrate-side illumination and electrolyte-side illumination	•	•		•	•	S5
Figure S7:	in situ UV-Vis spectra						S6

Morphology

SEM images of nanostructured $CuFe_2O_4$ photoanode are shown in the left panel of Figure S1. SEM setup (Zeiss Merlin) for these images are 2 kV electron high tension (EHT), 100 pA probe current, 3 mm working distance (WD) and annular secondary electrons detector (In-Lens).

Figure S1: Top-view and cross-sectional SEM image of $CuFe_2O_4$ photoanode.

Raman spectrum

Raman spectroscopy was performed with a Raman microscopy (HORIBA Jobin Yvon XploRA PLUS) coupled with an optical microscope (Olympus BX41). The assignment of Raman peaks is displayed in Table $S1.^{s1-s4}$

Figure S2: Raman spectrum of $CuFe_2O_4$ photoanode.

Table S1: Assignment of Raman peaks on CuFe₂O₄.

Assignment	Raman Shift (cm^{-1})
$\begin{array}{c} \mathbf{E}_{g} \\ \mathbf{F}_{2g} \end{array}$	$168 \\ 483$
A_{1g}	674

UV-Vis absorption spectrum

The UV-Vis absorption spectrum was recorded by a UV-Vis spectrophotometer (Shimadzu UV-3600).

Figure S3: UV-Vis absorption spectrum of $CuFe_2O_4$ photoanode.

Photocurrent under LED illumination

Figure S4: Current-voltage characteristics of $CuFe_2O_4$ photoanode measured under LED irradiation and dark condition in 1 M NaOH electrolyte.

Mean transit time for photogenerated electrons (τ_d)

Figure S5: Mean transit time for photogenerated electrons (τ_d) as a function of applied potential.

Substrate-side illumination and electrolyte-side illumination

Figure S6: The effect of substrate-side illumination (SSI) and electrolyte-side illumination (ESI) on the photocurrent of $CuFe_2O_4$ photoanode measured under 452 nm monochromatic illumination (a) with and (b) without H_2O_2 . (c) Gärtner model fitting of photocurrent.

in situ UV-Vis spectra

Figure S7: in situ UV-Vis absorption spectra of a $CuFe_2O_4$ photoanode measured under open circuit conditions and during OER under an applied bias of 1.8 V vs RHE.

References

- (S1) Guijarro, N.; Bornoz, P.; Prevot, M.; Yu, X.; Zhu, X.; Johnson, M.; Jeanbourquin, X.;
 Le Formal, F.; Sivula, K. Sustainable Energy & Fuels 2018, 2, 103–117.
- (S2) Chatterjee, B. K.; Bhattacharjee, K.; Dey, A.; Ghosh, C. K.; Chattopadhyay, K. K. Dalton Transactions 2014, 43, 7930–7944.
- (S3) Verma, K.; Kumar, A.; Varshney, D.Current Applied Physics 2013, 13, 467–473.
- (S4) Silva, M.; Silva, F.; Sinfrônio, F.; Paschoal, A.; Silva, E.; Paschoal, CJournal of Alloys and Compounds 2014, 584, 573–580.