Supplementary Information

Giant Enhancements in Electronic Transport and Photoelectric Properties of Bismuth Oxysulfide by Pressure-driven Layered to

Three-dimensional Structural Reconstruction

Ganghua Zhang,^{*ab} Qian Zhang,^a Qingyang Hu,^a Bihan Wang^a and Wenge Yang^{*a}

^aCenter for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, P. R. China

^bShanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Research Institute of Materials, Shanghai 200437, P. R. China

**E-mail: <u>zhangjiesss923@163.com</u> (G.H. Zhang) and <u>yangwg@hpstar.ac.cn</u> (W.G. Yang)*

Contents

Figure S1. Characterization of pristine sample Bi₉O_{7.5}S₆ at ambient condition.

Figure S2. Typical Rietveld refinements of Bi₉O_{7.5}S₆ in low and high pressure phases.

Figure S3. Evolution of crystalline structure of Bi₉O_{7.5}S₆ before and after BiO, BiS layer buckling.

Figure S4. HRTEM micrographs of Bi₉O_{7.5}S₆ before and after the pressure treatment.

Figure S5. SEM and EDS mapping images of Bi₉O_{7.5}S₆ before and after the pressure treatment.

Figure S6. *In situ* photocurrent measurements during two sequential compression and decompression cycles.

Figure S7. *I-t* characteristic of Bi₉O_{7.5}S₆ during compression as a function of pressure from 0.6 to 58.1 GPa.

Figure S8. The shrinkage of $Bi(1)S_6$ octahedral layers under compression.

Figure S9. The microphotograph of the single-crystal sample in air and DAC.

Figure S10. Electronic band structure of Bi₉O_{7.5}S₆ during compression up to 45 GPa.

Table S1. Refined structure parameters and selected bond lengths of the $Bi_9O_{7.5}S_6$ phases at low pressure (0.5 GPa) and high pressure (25.7 GPa).

Figure S1. Characterization of pristine sample Bi₉O_{7.5}S₆ at ambient condition. (a) Comparison of the experimental powder XRD pattern and calculated lattice reflection planes confirms the pure *R*-3*m* phase; (b) SEM and EDS characterization show the morphology of ~10s micron sized single crystal particles and the chemical composition. The powder XRD result at ambient condition matches the literature well with hexagonal space group *R*-3*m* and cell parameters a = 4.0553(1) Å, c = 31.0177(2) Å. SEM micrograph shows clearly the hexagonal plate-like morphology with a narrow particle-size distribution around 5–10 µm. EDX analysis of selected regions showed a uniform composition distribution.

Figure S2. Typical Rietveld refinements of Bi₉O_{7.5}S₆ in low and high pressure phases. (a) Refinement of 0.5 GPa XRD data with space group *R*-3*m*, a = b = 4.0437 (2) Å, c = 30.8878(3) Å and V = 438.83(3) Å³. (b) Refinement of 25.7 GPa XRD data with space group *R*-3*m*, a = b = 3.7794(2) Å, c = 28.5252(1) Å and V = 352.87(4) Å³.

Figure S3. Evolution of crystalline structure of $Bi_9O_{7.5}S_6$ before and after BiO, BiS layer buckling. Atomic structure at ambient pressure (a) and 22.7 GPa (b) with same space group *R*-3*m*. The atoms are shown as balls: Bi (navy-blue), S (yellow) and O (red).

Figure S4. HRTEM micrographs of $Bi_9O_{7.5}S_6$ before (a) and after (b) the pressure treatment. The insets show the enlarged view of HRTEM image (upper right) and the electron diffraction pattern (bottom right) viewed along [-110] zone axis.

Figure S5. SEM and EDS mapping images of Bi₉O_{7.5}S₆ before and after the pressure treatment.

Figure S6. *In situ* photocurrent measurements during two sequential compression and decompression cycles. Photocurrent density (J_{ph}) evolution of Bi₉O_{7.5}S₆ up to 58 GPa (a) and enlarged view at the lower pressure region (b). Photocurrents of Bi₉O_{7.5}S₆ before (first cycle) and after (second cycle) pressure treatments at a low pressure of 0.6 GPa (c) and a high pressure of 58 GPa (d).

Figure S7. *I-t* characteristic of $Bi_9O_{7.5}S_6$ during compression as a function of pressure from 0.6 to 58.1 GPa.

Figure S8. The shrinkage of Bi(1)S₆ octahedral layers under compression. (a) The schematic Bi-S and Bi-O layers. d_{Bi-S} and d_{Bi-O} indicate the thicknesses of Bi-S and Bi-O layers, respectively. (b) Normalized thicknesses of Bi-S and Bi-O layers versus pressure. The bond length of Bi(1)-S (c) and the bond angles of \angle S-Bi(1)-S (d) at varied pressures.

Figure S9. The microphotograph of the single-crystal sample in air (a) and DAC (b).

Figure S10. Electronic band structure of $Bi_9O_{7.5}S_6$ during compression up to 45 GPa. The enlarge views at Γ and A points obviously illustrate the bandgap closing and the crossover from direct to indirect- transition bandgap.

Table S1.

Atom	Х	у	Z	U _{iso} (×100 Å ²)		g^a
<i>R</i> -3 <i>m</i> (0.5 GPa)						
Bi1	0.3333	0.6667	0.6667	0.628(1)		1
Bi2	0.3333	0.6667	0.4568(1)	0.517(4)		1
S 1	1	0	0.6148(5)	1.661(5)		1
01	0.6667	0.3333	0.4824(15)	1.579(1)		1
O2	1	0	0.5	1.792(3)		0.5
Selected bond lengths						
Bi1—S1	2.808(1)					
Bi2—O1	2.109(1)	Bi2—O1	2.405(1)	Bi2—O2	2.693(4)	
<i>R</i> -3 <i>m</i> (25.7 GPa)						
Bi1	0.3333	0.6667	0.6667	0.552(1)		1
Bi2	1	0	0.7798(1)	0.931(4)		1
S 1	1	0	0.5969(4)	1.640(7)		1
01	0.6667	0.3333	0.8333(3)	1.515(1)		1
O2	1	0	0.8506(6)	1.911(6)		0.5
Selected bond lengths						
Bi1—S1	2.595(3)	Bi2—S1	2.925(2)			
Bi2—O1	1.745(1)	Bi2—O1	2.459(5)	Bi2—O2	2.622(1)	

Refined structure parameters and selected bond lengths of the $Bi_9O_{7.5}S_6$ phases at low pressure (0.5 GPa) and high pressure (25.7 GPa).^{*a*}

^{*a*}Numbers in parentheses are standard deviations of the last significant digit. U_{iso} is the isotropic thermal parameter, *g* is the occupation factor. *Rwp* and *Rp* are agreement indices for the structure refinements by the Rietveld method. At 0.5 GPa, space group *R*-3*m* (No 166): a = b = 4.0437(2) Å, c = 30.8878(3) Å and V = 438.83(3) Å³; $R_{wp} = 3.43\%$, $R_p = 2.40\%$; At 22.7 GPa, space group *R*-3*m* (No 166): a = b = 3.7794(2) Å, c = 28.5252(1) Å and V = 352.87(4) Å³; $R_{wp} = 3.40\%$, $R_p = 2.61\%$.