Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI)

A strategy to develop high efficient composite based TENG through dielectric constant,

internal resistance optimization, and surface texture modification

Sarbaranjan Paria, Suman Kumar Si, Sumanta Kumar Karan, Amit Kumar Das, Anirban Maitra, Ranadip Bera, Lopamudra Halder, Aswini Bera, Anurima De, Bhanu Bhusan Khatua*

Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.

*Corresponding Author

Dr. B. B. Khatua (Email: khatuabb@matsc.iitkgp.ernet.in).

Materials Science Centre, Indian Institute of Technology, Kharagpur -721302, India.

Tel.:+91-3222-283982

Fig. S1 (a) XRD of Cu and CuO@Cu foil, (b) Enlarged view of the marked area in (a) of Fig. S1.

It has been observed that both the two XRD patterns consist of two intense peaks at $2\theta \approx 44^{\circ}$ and 51° Cu foil. In Fig. b, CuO@Cu foil exhibits two extra peaks at $2\theta \approx 35.5^{\circ}$, 38.6° , corresponds to (002), (111) crystal planes of CuO [JCPDS card no. 005–0661].¹

Fig. S2 Size distribution profile of the as synthesized ZnSnO₃ nanocubes.

Fig. S3 Generated voltage (a) and current (b) from the TENG with pure PDMS as active friction layer.

Fig. S4 Output voltage generation performance of the TENG reverse connection.

Fig. S5 Transferred charges of the fabricated TENGs during finger tapping, pure PDMS (22 μ C), PDMS/ZnSnO₃ (120 μ C), PDMS/ZnSnO₃/MWCNT (186 μ C), surface treated PDMS/ZnSnO₃/MWCNT (247 μ C).

Fig. S6 FESEM image of the surface of the PDMS/ZnSnO3 composite at 9 wt% loading.

Fig. S7 The cross-section of the capacitance structure of the TENG.

Fig. S8 Polarization–electric field hysteresis loop measured on the 300 μm PDMS/ZnSnO₃ composite film at 7 wt% ZnSnO₃ loading at room temperature.

Fig. S9 FESEM image of the cryo-fractured surface of the PDMS/ZnSnO₃/MWCNT composite at 7 wt% ZnSnO₃ and 1 wt% MWCNT loading.

Fig. S10 FESEM image of the surface of the PDMS/ZnSnO₃/MWCNT composite at 7 wt% ZnSnO₃ and 1.5 wt% MWCNT loading.

Fig. S11 Generated open circuit voltage of the fabricated TENG under elbow pressing (a) and heel pressing (b).

Fig. S12 (a) Rectified open circuit voltage of the fabricated TENG.

Calculation of applied force and pressure on the TENG:

The calculation of the applied pressure produced by finger impact includes the physical model combining the gravity and pulse term.² When a body (here finger) falls on TENG, there two processes can be expected 1) initially touching the surface of the film, and 2) completely acting on the film. The velocity of the body increases and reaches to maximum value in the first process and gradually decreases to zero in the second process. Hence, the calculation depends on the kinetic energy and momentum theorem; we have the following basic equations:

Where, m is the mass of the tapping finger, h is height of falling, v is the maximum velocity of falling, σ is the pressure developed during contact or applied stress, F is the contact force,

S is the contact area, and Δt is the time spanning during second process. Here, S= 400 mm² is the electrode area of the TENG, m= ~1.4 kg is measured by using a laboratory balance, $\Delta t =$ 0.34 s is the measured average time variation between the two successive voltage peaks, h = ~0.11 m and g = 9.8 N/kg. Therefore, the above values determines the input force, F ~19.8 N which gives the contact pressure, $\sigma \sim 49.5$ kPa.

Calculation of energy conversion efficiency:

Energy conversion efficiency is well-defined as the ratio between the output electrical energy recorded on the outer load resistance and the overall applied mechanical energy, which can be obtained using the subsequent equation.

Energy Conversion Efficiency (η %)

= registered electrical energy/total input mechanical energy

$$=\frac{\int_{t_1}^{t_2} I^2 R dt}{\frac{1}{2}mv^2 + mg\Delta h}$$

Where m is the weight of human finger (1.4 kg), v is the velocity of the finger in m/s, g is acceleration due to gravity (9.81m/s²) and Δh is the distance between TENG and maximum height of the finger. During the measurement of the output performance, the TENG device was subjected to two type forces, the press force and the gravity. The calculated total input mechanical energy is 2.18 mJ.

 Table S1: Comparison of the output performance of PDMS/ZnSnO₃/MWCNT based TENG

 device with other nanogenerators earlier reported elsewhere.

Nanogenerators	Output voltage	Current or current density	Power or power density
PDMS-PDMS/MWCNT ³	30 V	3.5 µA	130 µW
Graphene-PDMS/ZnO ⁴	271 V	7.8 μΑ	0.39 mW
Al-PDMS/CNT ⁵	77.8 V	25.7 μΑ	1.98 mW
PA6-PVDF/ZnSnO ₃ ⁶	1200 V	20 µA	0.47 mW m^{-2}
Al-PDMS/ZnSnO ₃ ⁷	400 V	28 μΑ	3 mW
Al- PDMS/BaTiO ₃ ⁸	375 V	6 μΑ	2.25 mW
Cu-PDMS /SrTiO ₃ 9	338 V	9.06µAcm ⁻²	6.47 W m ⁻²
Cu-PDMS/NaNbO3 ¹⁰	550 V	16 μΑ	5.5 W m^{-2}
This work	475 V	36 µA	4.2 mW

 Table S2: Comparison of the energy conversion efficiency of PDMS/ZnSnO₃/MWCNT

 based TENG device with other nanogenerators earlier reported elsewhere.

Reference	Technique	Active Materials	Efficiency
Nano Energy, 2017 ¹¹	TENG	PTFE pellets	13.1%
Nat. Commun., 2016 ¹²	TENG	Mesoporous PDMS	22.4%
Nano Res., 2017 ¹³	Piezo+TENG	P(VDF-TrFE)	5.6%
Adv. Mater., 2014 ¹⁴	TENG	FEP and Al	85%
Energy Conv. Manag., 2017 ¹⁵	Thermoelectric	Human skin	24%
ACS Nano, 2017 ¹⁶	TENG+EMG	Magnet array and FEP	36.4%
Nanoscale,2017 ¹⁷	TENG	PDMS/cellulose	17%
This work	TENG	PDMS/ZnSnO ₃ /MWCNT	68%

Calculation of response time:

Calculation of response time for finger assisted tapping

X13.74697014 sec X2......3.77579072 sec X2-X1= 0.02882058Calculation of response time for human elbow press X116.2935323 sec X2......16.3984426 sec X2-X1= 0.1049103 sec Calculation of response time for human heel press X123.8643738 sec X2.......24.0947437 sec X2-X1= 0.2303699 sec

Video file: Sensitivity of TENG under elbow, heel and sewing machine pressing and powering of several colour LEDs under finger tapping

References

- [1] A Maitra, S K Karan, S Paria, A K Das, R Bera, L Halder, S K Si, A Bera, B B Khatua.. Nano Energy. 2017, 40, 633-45.
- [2] C. Hou, T. Huang, H. Wang, H. Yu, Q. Zhang and Y. Li, *Scientific reports*, 2013,3.
- [3] Y. Zhu, B. Yang, J. Liu, X. Wang, L. Wang, X. Chen and C. Yang, *Sci. Rep*, 2016, 6, 22233.
- [4] X. He, X. Mu, Q. Wen, Z. Wen, J. Yang, C. Hu and H. Shi, *Nano Res.*, 2016, 9, 3714-3724.
- [5] M.-K. Kim, M.-S. Kim, H.-B. Kwon, S.-E. Jo and Y.-J. Kim, *RSC Adv.*, 2017, 7, 48368-48373.
- [6] N. Soin, P. Zhao, K. Prashanthi, J. Chen, P. Ding, E. Zhou, T. Shah, S. C. Ray, C. Tsonos and T. Thundat, *Nano Energy*, 2016, 30, 470-480.
- [7] G. Wang, Y. Xi, H. Xuan, R. Liu, X. Chen and L. Cheng, *Nano Energy*, 2015, 18, 28-36.
- [8] D. Ali, B. Yu, X. Duan, H. Yu and M. Zhu, *Nanotechnology*, 2017, 28, 075203.
- [9] J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi and C. Hu, ACS Appl. Mater. Interfaces, 2015, 8, 736-744.
- [10] M. Lai, L. Cheng, Y. Xi, Y. Wu, C. Hu, H. Guo, B. Du, G. Liu, Q. Liu and R. Liu, *J. Phys. D*, 2017, **51**, 015303.
- [11] Y. Xi, J. Wang, Y. Zi, X. Li, C. Han, X. Cao, C. Hu and Z. Wang, *Nano Energy*, 2017, 38, 101-108.
- [12] J. Chun, B. U. Ye, J. W. Lee, D. Choi, C.-Y. Kang, S.-W. Kim, Z. L. Wang and J. M. Baik, *Nat. Commun.*, 2016, 7, 12985.

- [13] K. Parida, V. Bhavanasi, V. Kumar, R. Bendi and P. S. Lee, *Nano Res.*, 2017, 10, 3557-3570.
- [14] Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, J. Yang, Z. Wu and Z. L. Wang, Adv. Mater., 2014, 26, 6599-6607.
- [15] M. Thielen, L. Sigrist, M. Magno, C. Hierold and L. Benini, *Energy Convers. Manag.*, 2017, 131, 44-54.
- [16] R. Cao, T. Zhou, B. Wang, Y. Yin, Z. Yuan, C. Li and Z. L. Wang, ACS Nano, 2017, 11, 8370-8378.
- [17] J. Peng, H. Zhang, Q. Zheng, C. M. Clemons, R. C. Sabo, S. Gong, Z. Ma and L. S. Turng, *Nanoscale*, 2017, 9, 1428-1433.