Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Supporting Information

Heterostructures of Ni–Co–Al layered double hydroxide assembled on V₄C₃ MXene for high-energy hybrid supercapacitors

Xin Wang,^{a,b} Hui Li,^a Han Li,^{a,b} Shuai Lin,^{a*} Jin Bai,^{a,b} Jianming Dai,^a Changhao Liang,^a Xuebin Zhu,^{a*} Yuping Sun^{a,c,d} and Shixue Dou^e

^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

^b University of Science and Technology of China, Hefei 230026, People's Republic of China

^c High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

^d Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

^e Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2500, Australia

*Corresponding author E-mail: linshuai17@issp.ac.cn and xbzhu@issp.ac.cn

Figure S1 TEM image (a), HRTEM image (b) and Fast Fourier transform (FFT) in the inset of the NiCoAl-LDH/V₄C₃T_x.

Figure S2. Characterizations of NiCoAl-LDH nanosheets. (a) FESEM image, (b)TEM image, (c) XRD pattern, (d) EDS spectra and (e) TEM image and corresponding elemental mapping images of Ni, Co, Al and O elements of NiCoAl-LDH nanosheets.

As shown in Figure S1c, the XRD pattern of NiCoAl-LDH illustrates that the diffraction peak can be assigned to a typical LDH with a rhombohedral microstructure.¹ Strong characteristic diffraction peaks of (003), (006) and (012) are clearly shown in Figure S1c, corresponding to the nickel-cobalt carbonate hydroxide hydrate.² Moreover, the sharp diffraction peaks strongly indicated that the as-prepared Ni-Co-Al-LDH was well crystallized. Figure S1a, b show the NiCoAl-LDH microstructures with the typical nanosheet structure. The elemental mapping images of NiCoAl-LDH indicate that the Ni, Co, Al and O elements have a relatively uniform distribution in the NiCoAl-LDH nanosheets (Figure S1e). XRD pattern, FE-SEM images, TEM images, elemental mapping images and EDS spectra (Figure S1d) together confirm that NiCoAl-LDH nanosheets have been successfully synthesized.

Figure S3. Characterizations of V_4C_3 MXene sheets. (a) FESEM image, (b)TEM image, (c) XRD pattern, (d) EDS spectra and (e) TEM image and corresponding elemental mapping images of V, C and F

elements of V₄C₃ MXene sheets.

V₄AlC₃ powders were etched in hydrofluoric acid (HF) to synthesize V₄C₃T_x MXene. XRD patterns for the as-prepared V₄AlC₃ bulk and V₄AlC₃ after HF treatment are shown in Figure S2c. It is observed that the (002) and (004) peaks of V₄C₃T_x MXene appeared after 96 hours HF etching. The organ-like grain morphology of the HF etched V₄AlC₃ powder is shown in the FE-SEM image (Figure S2a), revealing the typical MXene morphology in accordance with previous reports.³⁻⁸ The TEM image (Figure S2b) in Fig. 2d shows the typical MXene characteristics. The elemental mapping images of V₄C₃T_x indicate that the V, C, O and F elements have a relatively uniform distribution in the V₄C₃T_x sheets (Figure S2e). XRD pattern, FE-SEM images, TEM images, elemental mapping images and EDS spectra (Figure S2d) together confirm that V₄C₃T_x MXene have been successfully synthesized.

Figure S4. (a) Ni 2p, (b) Co 2p, (c) Al 2p and (d) V 2P XPS spectrum of NiCoAl-LDH/V₄C₃T_x

All XPS peaks were calibrated by C 1s. The Ni 2p spectrum (Figure S3a) has two major peaks Ni 2p1/2 around 874.0 and Ni 2p3/2 at 856.2 eV with a spin-energy separation of 17.8

eV and satellite peak at 880.3 and 862.3 eV, which indicates Ni²⁺. Furthermore, a similar case can be found for Co 2p spectrum (Figure S3b), corresponding to Co²⁺. The Al 2p peak (Figure S3c) is located at 74.3 eV, which indicates the Al³⁺ in NiCoAl-LDH/V₄C₃T_x composite.^{9, 10} As shown in Figure S3d, the binding energy of the V-C species, including V $2p_{3/2}$ (513.5 eV) and V $2p_{1/2}$ (521.1 eV) well match previous reports on vanadium carbides.^{4, 11} The peaks at V $2p_{3/2}$ (517.2 eV) and V $2p_{1/2}$ (523.4 eV) can be attributed to V⁵⁺, and the peaks at V $2p_{3/2}$ (516.6 eV) and V $2p_{1/2}$ (523.4 eV) are due to V⁴⁺.

Figure S5. Cyclic voltammetry (CV) measurements of NiCoAl-LDH (a), $V_4C_3T_x$ (b) and NiCoAl-LDH/V₄C₃T_x (c) electrodes at different scan rates, CV curves of NiCoAl-LDH, $V_4C_3T_x$ and NiCoAl-LDH/V₄C₃T_x electrodes at a scan rate of 10 mV s⁻¹.

Figure S6. Galvanostatic charge-discharge(GCD) curves of NiCoAl-LDH (a), $V_4C_3T_x$ (b) and NiCoAl-LDH/ $V_4C_3T_x$ (c) electrodes at different current densities, GCD curves of NiCoAl-LDH, $V_4C_3T_x$ and NiCoAl-LDH/ $V_4C_3T_x$ electrodes at a current density of 2 A g⁻¹.

Figure S7. (a) CV curves at 5 mV s⁻¹, (b) galvanostatic charge-discharge (GCD) curves at 1 A g⁻¹, (c) the dependence of specific capacitance on the current densities of the NiCoAl-LDH/V₄C₃T_x electrodes in 1 M, 3 M and 6 M KOH electrolytes. GCD curves of NiCoAl-LDH/V₄C₃T_x electrodes at different current densities in 1 M (d), 3 M (e) and 6 M KOH (f) electrolytes.

Figure S8. (a) Current density dependent specific capacitance for two different electrodes. Galvanostatic charge-discharge curves of NiCoAl-LDH/V₄C₃T_x (b) and NiCoAl-LDH mixed V₄C₃T_x (NiCoAl-LDH +V₄C₃T_x) (c) electrodes at different current densities in 1 M KOH electrolyte.

Figure S9. Comparisons of Nyquist plots and Bode plots of the NiCoAl-LDH and $V_4C_3T_x$, and NiCoAl-LDH/V₄C₃T_x electrodes

Figure S10. Electrochemical performance of activated carbon (AC) electrodes in 1 M KOH. (a) CV curves of the activated carbon (AC) electrodes at different scan rates. (b) Galvanostatic charge-discharge curves of the activated carbon (AC) electrodes at different current densities from 1-20 A g^{-1} . (c) Specific capacitances of the electrodes plotted as a function of discharge current density. (d) Cycling performance of activated carbon (AC) at 15 A g^{-1} .

Figure S11. Kinetics and quantitative analysis of the NiCoAl-LDH/V₄C₃T_x//AC hybrid supercapacitor. Capacitive (gray) and diffusion-controlled (white) contribution to charge storage of NiCoAl-LDH/V₄C₃T_x//AC at 10, 20, 30, and 50 mV s⁻¹.

NiCoAl- LDH/V4C3Tx	1A g ⁻¹	2 A g ⁻¹	5 A g ⁻¹	10 A g ⁻¹	15 A g ⁻¹	20 A g ⁻¹
1 M KOH	1140 F g ⁻¹	1091 F g ⁻¹	943 F g ⁻¹	776 F g ⁻¹	651 F g ⁻¹	545 F g ⁻¹
3 M KOH	1360 F g ⁻¹	1300 F g ⁻¹	1151 F g ⁻¹	992 F g ⁻¹	881 F g ⁻¹	792 F g ⁻¹
6 M KOH	1557 F g ⁻¹	1445 F g ⁻¹	1259 F g ⁻¹	1094 F g ⁻¹	984 F g ⁻¹	898 F g ⁻¹

Table S1. The specific capacitance of NiCoAl-LDH/V₄C₃T_x at 1, 2, 5, 10, 15 and 20 A g^{-1} .

Table S2. The specific capacity of $V_4C_3T_x$, NiCoAl-LDH/V₄C₃T_x, NiCoAl-LDH+V₄C₃T_x and NiCoAl-LDH at 1, 2, 3, 5, 7, 10, 15 and 20 A g⁻¹.

Sample	1A g ⁻¹	2 A g ⁻¹	$3 A g^{-1}$	5 A g ⁻¹	7 A g ⁻¹	10 A g ⁻¹	15 A g ⁻¹	20 A g ⁻¹
V ₄ C ₃ T _x	152	142	134	117	107	96	84	77
	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹
NiCoAl-	627	600	570	519	479	427	358	300
LDH/V ₄ C ₃ T _x	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹
NiCoAl-	481	413	371	315	274	225	166	120
LDH+V4C3Tx	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹
NiCoAl-	656	571	512	438	373	307	211	134
LDH	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹	C g ⁻¹

Table S3. The Specific capacitance of active carbon (AC) at 1 A g^{-1} , 2 A g^{-1} , 3 A g^{-1} , 5 A g^{-1} , 7 A g^{-1} , 10 A g^{-1} , 15 A g^{-1} and 20 A g^{-1} .

Current density (A g ⁻¹)	1	2	3	5	7	10	15	20	
Specific capacitance (F g ⁻¹)	195	188	183	180	177	172	167	162	

Table S4. The specific capacitance of NiCoAl-LDH/V₄C₃T_x //AC hybrid device at 1, 2, 3, 5, 7, 10, 15 and 20 A g⁻¹.

Current density (A g ⁻¹)	1	2	3	5	7	10	15	20
Specific capacitance (F g ⁻¹)	194	170	161	146	137	122	112	102

Table S5. Comparison of the cycling stability, energy and power density of the hybrid supercapacitors with those of advanced hybrid/asymmetric supercapacitors recently reported.

hybrid/asymmetric supercapacitors	Retention	Energy and power density	Refs.	
NiCoAl-LDH/V4C3Tx//AC	98% after 10000 cycles at 20 A g ⁻¹	71.7 Wh kg ⁻¹ at 830 W kg ⁻¹ ; 45 Wh kg ⁻¹ at 20000 W kg ⁻¹	This work	
NiCo ₂ S ₄ ball- in- ball hollow spheres//graphene/carbon spheres	78.6% after 10000 cycles at 5 A g ⁻¹	42.3 Wh kg ⁻¹ at 476 W kg ⁻¹	Nat. Commun. 2015, 6,6694	
LiTi ₂ (PO ₄) ₃ //AC	85% after 1000 cycles at 10 mA cm ⁻²	24 Wh kg ⁻¹ at 200 W kg ⁻¹ ; 15 Wh kg ⁻¹ at 1.0 kW kg ⁻¹	<i>J. Power Sources</i> 2009 , 186, 224	
PbO ₂ //AC	83% after 3000 cycles at 2.5 mA cm ⁻²	26.5 Wh kg ⁻¹ at 30.8 W kg ⁻¹ ; 17.8 Wh kg ⁻¹ at 500 W kg ⁻¹	<i>Electrochim. Acta</i> 2009 , 54, 3835	
CoAl hydroxide/dodecyl sulfate anions/G//sandwiched G/porous C	84% after 2000 cycles at 100 mV $\rm s^{-1}$	20.4 Wh kg ⁻¹ at 9.3 kW kg ⁻¹	<i>Adv. Funct. Mater.</i> 2015 , 25, 1648	
NiMoO4//AC	14.3% after 10000 cycles at 5 A g^{-1}	$\begin{array}{l} 60.9 \ \mbox{Wh} \ \ \mbox{kg}^{-1} \ \ \mbox{at} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Adv. Energy Mater. 2015, 5	
Fe ₂ O ₃ /functionalized G//MnO ₂ /functionalized G	95% after 5,000 cycles at 0.5 A g^{-1}	50.7 Wh kg ⁻¹ at 100 W kg ⁻¹	<i>Adv. Funct. Mater.</i> 2015 , 25, 627	
AC//NiO-AC NFs	88% after 5000 cycles at 10 A g^{-1}	43.75 Wh kg ⁻¹ at 7.5 kW kg ⁻¹	J Mater Chem A 2015, 3, 7513	
Ni-Co phosphate//AC solid-state device	90.5% after 5,000 cycles at 2 A g^{-1}	32.5 Wh kg^{-1} at 0.6 kW kg^{-1}	<i>Adv. Funct. Mater.</i> 2017 , 27	
CoMoO ₄ -3D graphene//AC	87.42% after 10000 cycles at 1.67 A $\rm g^{-1}$	21.1 Wh kg^{-1} at 300 W kg^{-1} ; 3.59 Wh kg^{-1} at 6 kW kg^{-1}	<i>Adv. Mater.</i> 2014 , 26, 1044	
NiO-porous C hollow sphere//N-doped G	86.4% after 10000 cycles at 6.7 A g^{-1}	50 Wh kg ⁻¹ at 740 W kg ⁻¹ ; 26 Wh kg ⁻¹ at 14522 W kg ⁻¹	<i>Energy Environ.</i> <i>Sci.</i> 2014 , 8, 188	
NaMnO ₂ //AC	97% after 10 000 cycles at 10C	13.2 Wh kg ⁻¹ at 1.0 kW kg ⁻¹	<i>J. Power Sources</i> 2009 , 194, 1222	
CoO@ppy//AC	91.5% after 20 000 cycles at 25 mA cm^{-2}	43.5 Wh kg ⁻¹ at 87.5 kW kg ⁻¹ ; 11.8 Wh kg ⁻¹ at 5.5 kW kg ⁻¹	Nano Lett. 2013 , 13, 2078	
Ni ₃ S ₂ /MWCNT-NC//AC	91% after 5000 cycles at 4 A g^{-1}	19.8 Wh kg ⁻¹ at 798 W kg ⁻¹ ; 15.4 Wh kg ⁻¹ at 6.4 kW kg ⁻¹	ACS appl. Mater. & interfaces 2013 , 5, 12168	
C cloth@NiCo2O4 //C cloth@nitrogen-doped C flakes	86.7% after 20000 cycles of at 5 mA cm^{-2}	31.9 Wh kg ⁻¹ at 2.9 kW kg ⁻¹ ; 27.3 Wh kg ⁻¹ at 22.9 kW kg ⁻¹	<i>Adv. Energy Mater.</i> 2017 , 7, 1602391	
Na4Mn9O18//AC	84% after 4000 cycles at 0.5 A g^{-1}	34.8 Wh kg ⁻¹ at 62 W kg ⁻¹ ; 21.0 Wh kg ⁻¹ at 337.4 W kg ⁻¹	J. Solid State Electrochem. 2013 , 17, 1939	
Ni-Co-Mn-OH/rGO//PPD/rGO	~91% after 10000 cycles at 20 A g^{-1}	74.7 W h kg ⁻¹ at 1.68 kW kg ⁻¹	Adv. Energy Mater. 2018, 8	

Current density (A g ⁻¹)	1	2	3	5	7	10	15	20
Energy density (Wh kg ⁻¹)	71.7	68.1	65.4	61.1	57.4	52.5	48.3	45
Power density (W kg ⁻¹)	830	803	2782	4741	6581	9692	14673	20000

Table S6. Energy density and corresponding power density of NiCoAl-LDH/V₄C₃ T_x //AC hybrid supercapacitor.

References

- 1. Z. Liu, R. Ma, Y. Ebina, N. Iyi, k. Takada and T. Sasaki, *Langmuir*, 2007, 23, 861-867.
- Y. Dou, S. Zhang, T. Pan, S. Xu, A. Zhou, M. Pu, H. Yan, J. Han, M. Wei and D. G. Evans, *Adv. Funct. Mater.*, 2015, 25, 2243–2249.
- 3. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Adv. Mater.*, 2011, **23**, 4248-4253.
- 4. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum, *J. Am. Chem. Soc.*, 2013, **135**, 15966-15969.
- M. R. Lukatskaya, S. Kota, Z. F. Lin, M. Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P. L. Taberna, M. Barsoum, P. Simon and Y. Gogotsi, *Nat. Energy*, 2017, 2, 17105.
- 6. B. Anasori, M. R. Lukatskaya and Y. Gogotsi, *Nat. Rev. Mater.*, 2017, **2**, 16098.
- 7. B. Soundiraraju and B. K. George, ACS Nano, 2017, 11, 8892-8900.
- 8. M. H. Tran, T. Schäfer, A. Shahraei, M. Dürrschnabel, L. Molina-Luna, U. I. Kramm and C. S. Birkel, *ACS Appl. Energy Mater.*, 2018, **1**, 3908-3914.
- 9. J. Yang, C. Yu, X. M. Fan, Z. Ling, J. S. Qiu and Y. Gogotsi, *J Mater Chem A*, 2013, 1, 1963-1968.
- 10. J. Yang, C. Yu, X. M. Fan and J. S. Qiu, *Adv Energy Mater*, 2014, 4, 1400761.
- 11. J. G. Choi, Appl. Surf. Sci., 1999, 148, 64-72.