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Table S1. The adsorption energy of H species (ΔEH*), the relevant contributions to the 

free-energy (ΔZPE and TΔS), and the final calculated Gibbs free-energy of adsorbed 

H* (ΔGH*) for different models.

Species ∆EH*(eV) ∆ZPE(eV) -T∆S (eV) ∆GH* (eV)

H2 / 0.289 -0.410 /

H* on 
pristine Ru -0.619 0.975 0.205 0.56

H* on Ru site
 [Mo-Ru] -1.249 0.686 0.205 -0.36

H* on Mo site
 [Mo-Ru] -1.203 0.686 0.205 -0.31

H* on Ru site
[MoRu3]

-1.186 0.774 0.205 -0.21

H* on Mo site
[MoRu3]

-1.078 0.774 0.205 -0.10



Figure S1. The corresponding values of GH* on the (002) and (101) planes of hcp 

MoRu3 for Ru and Mo sites. The (002) plane shows Gibbs free energy of adsorption 

of -0.36 and -0.13 eV for Ru and Mo site, respectively. The (101) plane represents 

GH* of -0.41 and -0.17 eV for Ru and Mo atom, respectively.



  

Figure S2. (a) SEM image and (b) XRD pattern of Zn-MOF precursor.
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Figure S3. SEM and EDS mapping for Mo@Ru-5.
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Figure S4. The N2 adsorption-desorption isotherm and pore size information for 

Mo@Ru-3. A type- II isotherm with a H3-type hysteresis loop is obtained, which is 

characteristic of mesoporous non-rigid aggregates. The Mo@Ru-3 sample shows a 

specific surface area of 71.13 m2 g-1.



Figure S5. (a) Summarized XPS spectra and (b) Ru3p, (c) Mo3d analysis.



Figure S6. (a) N1s XPS spectrum and (b) Mo3d XPS spectrum of Mo@Ru-2.
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Figure S7. The Ru/Mo atomic ratio for Mo@Ru-x (x= 1 to 5) samples.



Table S2. Comparison of the overpotential at a current density of 10 mA cm-2 and 
Tafel slopes of Mo@Ru-3 in this work with other catalysts.

Catalyst Overpotential 
(mV)

Tafel slop (mV 
dec-1) Reference

Mo@Ru-3 30.5 36.4 This work

Ru nanosheets 20 46 1

Ru@C2N 22 30 2 

Ru/layered carbon 35 46 3

Ru/CCS 27.3 33 4

Ni43Ru57 41 31 5

NiRu@N–C 50 36 6

Ni@Ni2P−Ru 51 35 7

Ru/grapphene 53 44 8

WO0.29 70 50 9

Ni-Mo2C@C 72 65.6 10

Ru/MeOH/THF 83 46 11

Fe3C/Mo2C@NPGC 98 45.2 12

WC nanoparticles 98 52 13

Mo2C/graphene 130 57.3 14

Cu7S4@MoS2 133 48 15

Co/CoP 146 51.3 16

1T-WS2 142 70 17

WC@CNTs 145 72 18

Co2P 134 51.7 19

Co@Mo2C 140 39 20

CoP 159 59 21

Co-NG 147 82 22

Mo2C@PC 177 96 23



Figure S8. Polarization curve of commercial Ru/C (10 wt%) catalyst obtained in a 

three-electrode system. This catalyst requires 126.6 and 226.9 mV to drive the current 

densities of 10 and 60 mA cm-2, respectively.



Figure S9. (a-c) Cyclic voltammetry curves of Mo@Ru-2, Mo@Ru-3 and Mo@Ru-4, 

respectively. The black arrow indicates the scan rate from 5 mV s-1 to 50 mV s-1. (d) 

The current density variation (△J =Ja-Jc) at an overpotential of 0.20 V plotted against 

scan rate fitted to a linear regression enables the estimation of Cdl, where the slope is 

twice Cdl.
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Figure S10. (a) SEM and EDS mapping, (b) XRD patterns for Mo@Ru-3 sample 

after 5000 CV cycles testing.
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Figure S11. Polarization curves of (a) Mo@Ru-2 and Mo@Ru-4, respectively, 

recorded before and after 5000 potential sweeps.
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Figure S12. (a) XRD patterns and (b) HER polarization curves for Mo@Ru-3 

samples annealed at 650°C, 750°C and 850°C, respectively.
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Table S3. Current densities at various cell voltages and different temperatures for the 
as-prepared Mo@Ru-3 catalyst tested in a home-made PEM electrolyzer.

Current 
density

(A cm-2)
1.6 V 1.7 V 1.8 V 1.9 V 2.0 V

25°C 0.026 0.103 0.213 0.354 0.502

40°C 0.041 0.145 0.288 0.461 0.645

60°C 0.070 0.216 0.403 0.627 0.865

80°C 0.120 0.319 0.564 0.852 1.156
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