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Table S1. The adsorption energy of H species (AEgx), the relevant contributions to the
free-energy (AZPE and TAS), and the final calculated Gibbs free-energy of adsorbed
H* (AGy+) for different models.

Species AEgdeV) | AZPE(@V) | -TAS (eV) AGy- (eV)
H, / 0.289 -0.410 /

%k
H*on -0.619 0.975 0.205 0.56

pristine Ru

H* on Ru site

(Mo-Ru] -1.249 0.686 0.205 -0.36
om0 | ess | oxs | s
gzoollzulzlu e 1% h - o
H* on Mo site 1.078 0.774 0.205 -0.10
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Figure S1. The corresponding values of AGy+ on the (002) and (101) planes of hcp
MoRuj; for Ru and Mo sites. The (002) plane shows Gibbs free energy of adsorption
of -0.36 and -0.13 eV for Ru and Mo site, respectively. The (101) plane represents
AGyx0f-0.41 and -0.17 eV for Ru and Mo atom, respectively.
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Figure S2. (a) SEM image and (b) XRD pattern of Zn-MOF precursor.
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Figure S3. SEM and EDS mapping for Mo@Ru-5.
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Figure S4. The N, adsorption-desorption isotherm and pore size information for
Mo@Ru-3. A type- II isotherm with a H3-type hysteresis loop is obtained, which is

characteristic of mesoporous non-rigid aggregates. The Mo@Ru-3 sample shows a

specific surface area of 71.13 m? g'!.
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Figure S5. (a) Summarized XPS spectra and (b) Ru3p, (c) Mo3d analysis.
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Figure S6. (a) N1s XPS spectrum and (b) Mo3d XPS spectrum of Mo@Ru-2.
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Figure S7. The Ru/Mo atomic ratio for Mo@Ru-x (x=1 to 5) samples.



Table S2. Comparison of the overpotential at a current density of 10 mA c¢cm™ and
Tafel slopes of Mo@Ru-3 in this work with other catalysts.

Catalyst g:f\ell;potential g:cfﬁl) slop (mV Reference
Mo@Ru-3 30.5 36.4 This work
Ru nanosheets 20 46 !
Ru@C,N 22 30 2
Ru/layered carbon | 35 46 3
Ru/CCS 27.3 33 4
NigzRus; 41 31 3
NiRu@N-C 50 36 6
Ni@Ni,P-Ru 51 35 7
Ru/grapphene 53 44 8
WOy 29 70 50 ?
Ni-Mo,C@C 72 65.6 10
Ru/MeOH/THF 83 46 1
Fe;C/Mo,C@NPGC | 98 45.2 12
WC nanoparticles 98 52 13
Mo,C/graphene 130 57.3 14
Cu;S;@MoS, 133 48 15
Co/CoP 146 51.3 16
1T-WS2 142 70 17
WC@CNTs 145 72 18
Co,P 134 51.7 19
Co@Mo,C 140 39 20
CoP 159 59 21
Co-NG 147 82 2
Mo,C@PC 177 96 2
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Figure S8. Polarization curve of commercial Ru/C (10 wt%) catalyst obtained in a
three-electrode system. This catalyst requires 126.6 and 226.9 mV to drive the current

densities of 10 and 60 mA cm2, respectively.
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Figure S9. (a-c) Cyclic voltammetry curves of Mo@Ru-2, Mo@Ru-3 and Mo@Ru-4,

respectively. The black arrow indicates the scan rate from 5 mV s! to 50 mV s, (d)

The current density variation (AJ =Ja-Jc) at an overpotential of 0.20 V plotted against

scan rate fitted to a linear regression enables the estimation of Cg4, where the slope is

twice Cy.
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Figure S10. (a) SEM and EDS mapping, (b) XRD patterns for Mo@Ru-3 sample

after 5000 CV cycles testing.



09 [—=— Initial 09 [“=— mitial ‘
@ After cyclin ~8— After cyclin

-10 10
L o
§ §

& 20 < 20
E E
2 2

5 -30 ] -30
c c
@ [
] °

£ 404 Ik
@ @
E E
3 S

O .50 © 50

-60 T T T T T -60 T T T T T
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 -0.5 -0.4 -0.3 -0.2 0.1 0.0
Potential (V vs RHE) Potential (V vs RHE)

Figure S11. Polarization curves of (a) Mo@Ru-2 and Mo@Ru-4, respectively,

recorded before and after 5000 potential sweeps.
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Figure S12. (a) XRD patterns and (b) HER polarization curves for Mo@Ru-3

samples annealed at 650°C, 750°C and 850°C, respectively.



Table S3. Current densities at various cell voltages and different temperatures for the
as-prepared Mo@Ru-3 catalyst tested in a home-made PEM electrolyzer.

Current

density 1.6V 1.7V 1.8V 19V 20V

(A cm™)
25°C 0.026 0.103 0.213 0.354 0.502
40°C 0.041 0.145 0.288 0.461 0.645
60°C 0.070 0.216 0.403 0.627 0.865
80°C 0.120 0.319 0.564 0.852 1.156
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