Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information

Salen-Porphyrin-based conjugated microporous polymer supported Pd nanoparticles: highly efficient heterogeneous catalysts for aqueous C–C coupling reactions

Pengyao Ju,^a Shujie Wu,^a Qing Su,^{*a} Xiaodong Li,^a Ziqian Liu,^a Guanghua Li^b and Qiaolin Wu^{*a}

^aCollege of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China ^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China Emails: suqing@jlu.edu.cn (Q. Su); wuql@jlu.edu.cn (Q. Wu)

Table of Contents

Synthetic procedures
Fig. S1 TGA date of SP-CMP and Pd@SP-CMP4
Fig. S2 PXRD date of SP-CMP and Pd@SP-CMP4
Fig. S3 Solid-state ¹³ C NMR spectrum of SP-CMP5
Fig. S4 BET surface area plot for Pd@SP-CMP5
Fig. S5 SEM-EDX spectrum of Pd@SP-CMP6
Fig. S6 The XPS spectra of Pd@SP-CMP showing typical peaks for C 1S6
Fig. S7 The XPS spectra of Pd@SP-CMP showing typical peaks for N 1S7
Fig. S8 The XPS spectra of Pd@SP-CMP showing typical peaks for O 1S7
Fig. S9 SEM image of the recovered Pd@SP-CMP after ten successive runs8
Fig. S10 XPS spectra of the Pd@SP-CMP after ten successive runs8
Fig. S11 The FT-IR spectra of Pd@SP-CMP and Pd@SP-CMP after treatment in
aqueous solutions for 3 days (pH = 1 and 13)9
Table S1 The Suzuki–Miyaura coupling reactions of phenylboronic acid and
iodobenzene catalyzed by Pd@SP-CMP under various reaction conditions10
Table S2 The Mizoroki-Heck coupling reactions of styrene and iodobenzene catalyzed
by Pd@SP-CMP under various reaction conditions10
Table S3 Pd supported material catalysts for Suzuki–Miyaura cross coupling reactions
reported to date
Table S4 Pd supported material catalysts for Mizoroki-Heck cross coupling reactions
reported to date
¹ H NMR and ¹³ C NMR spectra13

Synthetic procedures

Compound 2 (1-hydroxy-2-t-butyl-isophthalaldehyde). 2-tert-butyl phenol (6 g, 0.04 mmol) and hexamethylenetetramine (6.72 g, 0.048 mmol) were dissolved in TFA (36 mL) and the solution was heated at 120 °C for 3 h. After cooling to room temperature 10 % aq. H₂SO₄ (36 mL) was added and again the temperature maintained at 100 °C for 3 h. After completion the solution was basified with Na₂CO₃ to pH=8 and extracted with 90 mL of CHCl₃. The combined organic layers were dried on Na₂SO₄, filtered and concentrated to dryness under reduced pressure. The crude product was purified on silica gel column using petroleum ether-ethyl acetate (5:1, v/v) as eluent to afford compound **2** (4.2 g, 51 % yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 12.40 (s, 1H), 9.99 (s, 1H), 9.93 (s, 1H), 8.07 (d, *J* = 2.0 Hz, 1H), 7.98 (d, *J* = 2.0 Hz, 1H), 1.46 (s, 9H) ppm.

Monomer 3. Compound **2** (1.03 g, 5 mmol) was poured in a round-bottomed flask which containing 25 mL methanol. And then ethylenediamine (150 mg, 2.5 mmol) was added and the reaction mixture was refluxed for 5 h. After cooling to room temperature, the yellow precipitate was collected by filtration, washed with cool methanol, and dried under vacuum to give a yellow solid in 90 % yield (1.4 g). ¹H NMR (400 MHz, d_6 -DMSO): δ 14.74 (d, J = 6.5 Hz, 1H), 9.68 (s, 1H), 8.68 (d, J = 7.1 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 4.01 (s, 2H), 1.35 (s, 9H) ppm.

Scheme S1. Schematic representation for the synthesis of monomer 3.

Fig. S1. TGA date of SP-CMP and Pd@SP-CMP.

Fig. S2. PXRD date of SP-CMP and Pd@SP-CMP.

Fig. S3. Solid-state ¹³C NMR spectrum of SP-CMP.

Fig. S4. BET surface area plot for Pd@SP-CMP calculated from the N₂ absorption isotherm.

Fig. S5. SEM-EDX spectrum of **Pd@SP-CMP**. The aluminum element comes from the aluminum stage, and the silicon element comes from the silicon wafer.

Fig. S6. The XPS spectra of **Pd@SP-CMP** showing typical peaks at 284.2 eV (C=C), 285 eV (C-N) and 286.5 eV (C=N) for C 1S.

Fig. S7. The XPS spectra of **Pd@SP-CMP** showing typical peaks at 399 eV (C=N) and 401 (C-N) for N 1S.

Fig. S8. The XPS spectra of **Pd@SP-CMP** showing typical peaks at 532.3 eV (C-O) for O 1S.

Fig. S9. SEM image of **Pd@SP-CMP** (left) and SEM image of **Pd@SP-CMP** after ten successive runs (right).

Fig. S10. XPS spectra of the Pd@SP-CMP after ten successive runs.

Fig. S11. The FT-IR spectra of **Pd@SP-CMP** and **Pd@SP-CMP** after treatment in aqueous solutions for 3 days (pH = 1 and 13).

Table S1 The Suzuki–Miyaura coupling reactions of phenylboronic acid and iodobenzene under various reaction conditions.^a

	ļ	HO∖ _B ∕OH			
	+	,	Pd@SP-CMP		
			solvent, base, time temperature		
Entry	Solvent	Base	T / °C	Time / h	Yield / % ^b
1	DMF	K ₂ CO ₃	90	8	99
2	DMF/H₂O	K ₂ CO ₃	90	8	99
3	H ₂ O	K ₂ CO ₃	90	8	99
4	H ₂ O	K ₂ CO ₃	80	8	99
5	H ₂ O	K ₂ CO ₃	50	8	95
6	H ₂ O	K_2CO_3	RT	8	51
7	H ₂ O	K_2CO_3	80	7	99
8	H ₂ O	K ₂ CO ₃	80	5	99
9	H ₂ O	K_2CO_3	80	4	95
10	H ₂ O	Na_2CO_3	80	5	99
11	H ₂ O	Et₃N	80	5	99

^{*a*} Iodobenzene (0.5 mmol), phenylboronic acid (0.75 mmol), base (0.75 mmol), solvent (5 mL), **Pd@SP-CMP** (0.3 mol%), N₂.

^b Isolated yields based on iodobenzene.

Table S2 The Mizoroki-Heck coupling reactions of styrene and iodobenzene under various reaction conditions.^a

	+	Pde solve te	@SP-CMP nt, base, time mperature		\neg
Entry	Solvent	Base	T/°C	Time / h	Yield / % ^b
1	H ₂ O	K ₂ CO ₃	90	12	55
2	1,4-dioxane	K ₂ CO ₃	90	12	94
3	1,4-dioxane / H₂O	K ₂ CO ₃	90	12	95
4	1,4-dioxane / H₂O	K ₂ CO ₃	80	12	95
5	1,4-dioxane / H₂O	K ₂ CO ₃	50	12	94
6	1,4-dioxane / H₂O	K ₂ CO ₃	RT	12	51
7	1,4-dioxane / H₂O	Na ₂ CO ₃	80	12	81
8	1,4-dioxane / H ₂ O	Et₃N	80	12	77

^{*a*} lodobenzene (0.5 mmol), styrene (0.6 mmol), base (0.75 mmol), solvent (5 mL), **Pd@SP-CMP** (0.6 mol%), N₂.

^b Isolated yields based on iodobenzene.

Table S3. Pd supported material catalysts for Suzuki–Miyaura cross coupling reactionsreported to date.

Entry	Catalyst	Base	Solvent	Temp. (∘C)	Time (h)	Yield (%)	Reference	
					(,	(/0)	Green Chem	
1	0.02 g	NaOH	DMF:H ₂ O =1:5	85	10	85	2011. 13 .	
	Pd-MPTAT-1				_		1317–1331.	
							J. Am. Chem.	
2	0.5 mol %	K ₂ CO ₃	<i>p</i> -xylene	150	3	97	Soc., 2011, 133 ,	
	Pd/COF-LZU1						19816–19822.	
		K ₂ CO ₃	DMF	80			Dalton Trans.,	
3	0.01 mol %				1.5	96	2012, 41 ,	
	Pa-CIN-1						1304–1311	
	1 mg		EtOH:H ₂ O =1:1				J. Mater. Chem.	
4		K ₂ CO ₃		80	1	99	<i>A,</i> 2013, 1 ,	
							14108–14114	
	20 mg						Appl. Catal. A:	
5		K ₂ CO ₃	H ₂ O	80	6	97	Gen., 2014, 469	
	F0(0)/ WC03-1						320-327.	
	0.5 mol % of Pd CelMcPdº-1		EtOH		0.25	91	Ind. Eng. Chem.	
6		K ₂ CO ₃		65			Res., 2014, 53 ,	
							8339-8345.	
	0.6 mol % of Pd CMC-Pd ^{II}	K ₂ CO ₃	EtOH 78		0.25	90	Ind. Eng. Chem.	
7				78			Res., 2015, 54 ,	
							790–797.	
	0.8 mol% Pd@NHC-MOP		EtOH:H ₂ O =1:1	80	0.5	99	ChemistrySelect,	
8		K ₂ CO ₃					2016, 1 ,	
							1371–1376.	
	0.1 mol % Pd Pd(OAc)₂@COF-30			70	0.33	100	ChemCatChem.,	
9		K ₂ CO ₃	MeOH:H ₂ O=4:1				2016, 8 ,	
	0						743–750.	
	5 mg Pd@CzMOP	5 mg					0.0	Polym. Chem.,
10		K ₂ CO ₃	DMF	80	6	96	2017, 8 ,	
							1488–1494.	
11	0.1 mol % Pd PdNPs@COF	K 60	DMF:H ₂ O =1:1	50	3	99	J. Am. Chem.	
		K ₂ CO ₃					<i>Soc.</i> , 2017, 139 ,	
							1/082-1/088.	
12	0.5 mol % Pd@PPPP-2	K ₂ CO ₃	<i>p</i> -xylene	150	3	94	Polym. Chem.,	
							2018, 9 ,	
	0.2 mol %						1430-1438.	
13		K ₂ CO ₃	H ₂ O	80	5	99	This work	
	Pa@SP-CIVIP							

Entry	Catalyst	Base	Solvent	Temp. (∘C)	Time (h)	Yield (%)	Reference	
	0.3 mol %						Appl. Catal. A:	
1	PdNs-PAMAM-	K ₂ CO ₃	NMP	100	2.5	95	Gen., 2011, 406	
	-g-MWCNTs						124–132.	
	0 E mol %		DMF			93	J. Organomet.	
2	Pd catalyst	K ₂ CO ₃		120	1		Chem., 2011,	
							696 , 594-599.	
	1.2 mol %	K ₂ CO ₃	H₂O	100	1.5	95	Green Chem.,	
3							2011, 13 ,	
	FINE 333						2408-2415.	
	0.5 mol %		EtOH:H ₂ O				ACS Catal.,	
4	Pd/PRGO	K ₂ CO ₃		180	0.16	100	2012, 2 ,	
	10/1100						145–154.	
	1 mg						J. Mater. Chem.	
5	MsMOP-1	Et₃N	DMAc	130	12	76	<i>A,</i> 2013, 1 ,	
							14108–14114.	
	0.1 mol % Fe₃O₄@PUNP-Pd	K ₂ CO ₃	DMF:H ₂ O =1:1		8	95	Green Chem.,	
6				120			2013, 15 ,	
							3429–3437.	
	15 mg Pd(0)@TpPa-1	K₂CO₃	СН₃ОН		6	92	J. Mater. Chem.	
7				105			A, 2014, 2 ,	
							7944–7952.	
	0.006 mol % Pd@MCOP		DMSO:H ₂ O =1:1	90	10	98	Green Chem.,	
8		K ₂ CO ₃					2014, 16 ,	
							4223–4233.	
	10 mg C-(KTB-Pd)	10 mg						Dalton Trans.,
9		K₃PO₄·3H₂O	DMF	120	2	99	2015, 44,	
							13906–13913.	
	1 mol % Pd@NHC-MOP						ChemistrySelect,	
10		Et₃N	DMF	130	24	82	2016, 1 , 1371–	
							1376.	
11	5 mol %	5 mol % Bu ₃ N	DMA	100	80	61	RSC Adv., 2017,	
	Pd/CM						7 , 1833–1840.	
12	0.009 mol %			120	2	92	New J. Chem.,	
	Fe ₃ O ₄ @SiO ₂	Et₃N	Solvent-free				2018, 42 ,	
	-Dendrimer-Pd						4748—4756.	
13	0.6 mol % Pd@SP-CMP	K ₂ CO ₃	1,4-dioxane: H ₂ O=1:1	80	12	99	This work	

Table S4. Pd supported material catalysts for Heck–Mizoroki cross coupling reactions reported to date.

¹H NMR and ¹³C NMR spectra

5-(tert-butyl)-4-hydroxyisophthalaldehyde: ¹H NMR (400 MHz, CDCl₃): δ 12.40 (s, 1H), 9.99 (s, 1H), 9.93 (s, 1H), 8.07 (d, *J* = 2.0 Hz, 1H), 7.98 (d, *J* = 2.0 Hz, 1H), 1.46 (s, 9H) ppm.

5,5'-((1E,1'E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(3-(tert-bu tyl)-4-hydroxybenzaldehyde): ¹H NMR (400 MHz, DMSO): δ 14.74 (d, *J* = 6.5 Hz, 1H), 9.68 (s, 1H), 8.68 (d, *J* = 7.1 Hz, 1H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.69 (d, *J* = 2.0 Hz, 1H), 4.01 (s, 2H), 1.35 (s, 9H) ppm.

1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃) : δ 7.63 (d, J = 7.9 Hz, 4H), 7.47 (t, J = 7.5 Hz, 4H), 7.38 (t, J = 7.3 Hz, 2H) ppm.

4-methoxy-1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 12.8, 5.0 Hz, 4H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.85 (s, 3H) ppm.

4-methyl-1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 7.3 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.26 – 7.20 (m, 2H), 2.39 (s, 3H) ppm.

[1,1'-biphenyl]-4-ol: ¹H NMR (400 MHz, CDCl₃): δ 7.54 (d, J = 7.5 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 8.6 Hz, 2H), 4.73 (s, 1H) ppm.

4-nitro-1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.65 – 7.60 (m, 2H), 7.52 – 7.44 (m, 3H) ppm.

[1,1'-biphenyl]-4-carbonitrile: ¹H NMR (400 MHz, CDCl₃): *δ* 7.74 – 7.66 (m, 4H), 7.61 – 7.56 (m, 2H), 7.51 – 7.45 (m, 2H), 7.42 (ddd, *J* = 7.3, 3.6, 1.3 Hz, 1H) ppm.

Methyl [1,1'-biphenyl]-4-carboxylate: ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.3 Hz, 2H), 7.64 (dd, *J* = 14.3, 7.6 Hz, 4H), 7.53 – 7.36 (m, 3H), 3.94 (s, 3H) ppm.

4,4'-dibromo-1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃): *δ* 7.56 (d, *J* = 8.5 Hz, 4H), 7.41 (d, *J* = 8.4 Hz, 4H) ppm.

[1,1'-biphenyl]-4,4'-dicarbonitrile: ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.9 Hz, 4H), 7.37 (d, *J* = 8.1 Hz, 4H) ppm.

4-fluoro-1,1'-biphenyl: ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, *J* = 8.0, 3.8 Hz, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.12 (t, *J* = 8.6 Hz, 2H) ppm.

Cinnamic acid: ¹H NMR (400 MHz, CDCl₃): δ 11.71 (s, 1H), 7.80 (d, J = 16.0 Hz, 1H), 7.55 (dd, J = 6.6, 2.9 Hz, 2H), 7.41 (dd, J = 6.2, 3.7 Hz, 3H), 6.46 (d, J = 16.0 Hz, 1H) ppm.

(E)-3-(4-hydroxyphenyl)acrylic acid: ¹H NMR (400 MHz, DMSO): δ 12.71 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 16.1 Hz, 1H), 6.75 (d, J = 16.1 Hz, 1H) ppm.

(E)-3-(4-nitrophenyl)acrylic acid: ¹H NMR (400 MHz, DMSO): δ 12.73 (s, 1H), 8.24 (d, J = 8.8 Hz, 2H), 7.99 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 16.1 Hz, 1H), 6.76 (d, J = 16.1 Hz, 1H) ppm.

Methyl cinnamate: ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.43 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.02 (dd, *J* = 38.1, 16.3 Hz, 2H), 6.93 – 6.88 (m, 2H), 3.83 (s, 3H) ppm.

Methyl (E)-3-(4-methoxyphenyl)acrylate: ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 16.0 Hz, 1H), 7.47 (d, J = 7.2 Hz, 2H), 6.90 (d, J = 7.2 Hz, 2H), 6.31 (d, J = 15.9 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 3H) ppm.

Methyl (E)-3-(4-nitrophenyl)acrylate: ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 15.9 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 6.32 (d, *J* = 15.9 Hz, 1H), 3.85 (s, 3H) ppm.

(E)-1,2-diphenylethene: ¹H NMR (400 MHz, CDCl₃): *δ* 7.52 (d, *J* = 7.3 Hz, 2H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 3.7 Hz, 1H), 7.12 (d, *J* = 5.5 Hz, 1H) ppm.

(E)-1-methoxy-4-styrylbenzene: ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.43 (m, 4H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.02 (dd, *J* = 38.1, 16.3 Hz, 2H), 6.93 – 6.88 (m, 2H), 3.83 (s, 3H) ppm.

(E)-1-nitro-4-styrylbenzene: ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 7.3 Hz, 2H), 7.46 – 7.28 (m, 4H), 7.15 (d, *J* = 16.3 Hz, 1H) ppm.

