Electronic supplementary information

Ladder-Type Dithienocyclopentadibenzothiophene-Cored Wide-Bandgap Polymers

for Efficient Non-Fullerene Solar Cells with Large Open-Circuit Voltages

Qisheng Tu,^{a,b} Changquan Tang,^{a,b} and Qingdong Zheng^{a,*}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, China. E-mail: qingdongzheng@fjirsm.ac.cn.

^b University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.

Table S1 Photovoltaic parameters of PSCs based on **PSS2**/EH-IDTBR (1:2.5, w/w), under the illumination of AM 1.5G (100 mW/cm²)

DPE Additive (v/v)	Annealing temperature [°C]	V _{oc} [V]	J _{SC} [mA cm ⁻²]	FF [%]	PCE [%] ^a
0	None	1 0/12	11 96	55.2	6 88 (6 61+0 17)
1%	None	1.042	13.72	53.0	7 64 (7 44+0 15)
0	120	1.031	12.72	56.2	7 28 (7 17+0 10)
	120	1.045	12.55	50.2	7.20 (7.17±0.10)
1%0	None	1.053	13.16	53.6	7.43 (7.35±0.05)

^a In parentheses are averaged values based on 8 devices. ^b The devices were quenched with methanol at room temperature.

Table S2 Hole and electron mobilities of the PSCs based on polymer:EH-IDTBR (1:2.5, w/w)

Active layer	μ_h (cm ² V ⁻¹ s ⁻¹)	μ_e (cm ² V ⁻¹ s ⁻¹)	μ_h/μ_e ratio
PSS2:EH-IDTBR ^a	6.60×10 ⁻⁶	1.10×10 ⁻⁵	0.60
PSS2:EH-IDTBR ^b	2.85×10 ⁻⁵	2.10×10 ⁻⁵	1.36
PSS3:EH-IDTBR ^b	1.34×10 ⁻⁵	4.52×10 ⁻⁵	0.30

^a Calculated by using the SCLC model from the as-cast blend film. ^b Calculated by using the SCLC model from blends with quenching treatment (120 °C).

Fig. S1 TGA curves of copolymers with a heating rate of 10 $^{\circ}$ C/min under N₂ atmosphere.

Fig. S2 Temperature-dependent absorption spectra of PSS2 in CB solution (1×10⁻⁵ M).

Fig. S3 J-V characteristics of the devices based on polymer:EH-IDTBR with different blend ratios.

Fig. S4 J-V characteristics of PSS2-based devices under different processing conditions.

Fig. S5 *J-V* characteristics of devices based on **PSS2**:PC₇₁BM and PTB7-Th:EH-IDTBR.

Fig. S6 Shelf stability of the best-performance PSC based on PTB7-Th:EH-IDTBR.

Fig. S7 $J^{1/2}$ -V characteristics of (a) hole- and (b) electron-only devices based on the polymer blends.