Electronic Supporting Information

A 3D flower-like VO₂/MXene hybrid architecture with superior

anode performance for sodium ion batteries

Feng Wu, ^{ab} Ying Jiang, ^a Zhengqing Ye, ^a Yongxin Huang, ^a Ziheng Wang, ^a Shuaijie Li, ^a Yang Mei, ^a Man Xie, ^a Li Li, ^{ab} and Renjie Chen*^{ab}

^a Beijing Key Laboratory of Environmental Science and Engineering, School of

Material Science & Engineering, Beijing Institute of Technology, Beijing 100081,

China

^b Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081,

China

E-mail: chenrj@bit.edu.cn.

Fig. S1 The survey XPS spectrum of VO₂/MX-1 hybrid.

Fig. S2 XPS of C 1s spectra of VO₂/MX-1 hybrid.

Fig. S3 SEM images of the (a) MX and (b) VO_2 .

Fig. S4 CV curves of (a) MX and (b) VO₂ electrodes at a scanning rate of 0.1 mV s⁻¹.

Fig. S5 Charge/discharge curves of the VO_2 electrode cycled for the 1st, 2nd, 50th, 100th, and 200th cycle at a current of 0.1 A g⁻¹

Fig. S6 Ex-situ XRD pattern of the VO₂/MX-1 electrode after the 10th cycle discharged to 0.01V.

Fig. S7 HRTEM image of the VO₂/MX-1 electrode after the 10th cycle discharged to 0.01V.

Table S1 T	he electrochemical	performance	comparison	of	MXene	based	and	VO_2
materials for	SIBs							

Electrode materials	Current density (mA g ⁻¹)	Final capacity (mA h g ⁻¹)	Capacity retention (%)	Ref.
Ti_3C_2 MXene-Derived Sodium Nanoribbons (NaTi_{1.5}O_{8.3})	200	171 mA h g ⁻¹ after 50 cycles	~ 81 (C _{50th} /C _{2nd})	1
alkalized Ti ₃ C ₂ MXene nanoribbons (a-Ti ₃ C ₂ MNRs)	50	113 mA h g ⁻¹ after 200 cycles	~67 (C _{200th} /C _{2nd})	2
MoS ₂ /Ti ₃ C ₂ T _x composite	100	250.9 mA h g ⁻¹ after 100 cycles.	~88 (C _{100th} /C _{2nd})	3
dimethyl sulfoxide intercalte into $Ti_3C_2T_x$ (d-D- Ti_3C_2Tx)	100	103 mA h g ⁻¹ after 500 cycles	~86 (C _{500th} /C _{2nd})	4
Sb ₂ O ₃ /MXene	100	472 mA h g ⁻¹ after 100 cycles	~ 106 (C _{100th} /C _{2nd})	5
VO ₂ /rGO nanorods	60	173 mA h g ⁻¹ after 100 cycles	$\sim 70 \label{eq:constraint} (C_{100th}/C_{2nd})$	6
VO ₂ /crumpled rGO	100	260 mA h g ⁻¹ after 500 cycles	$\sim 70 \\ (C_{\rm 500th}/C_{\rm 2nd})$	7
3D flower-like VO ₂ /MX-1	100	280.9 mA h g ⁻¹ after 200 cycles	~141 (C _{200th} /C _{2nd})	This work

References

- Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi and X. Bao, *Acs Nano*, 2017, 11, 4792-4800.
- P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, S. Wang, C. Sun, J. Qin, X. Shi and X. Bao, *Nano Energy*, 2017, 40, 1-8.
- 3. Y. Wu, P. Nie, J. Jiang, B. Ding, H. Dou and X. Zhang, Chemelectrochem, 2017, 4, 1560-1565.
- 4. G. Lv, J. Wang, Z. Shi and L. Fan, Materials Letters, 2018, 219, 45-50.
- 5. X. Guo, X. Xie, S. Choi, Y. Zhao, H. Liu, C. Wang, S. Chang and G. Wang, *Journal of Materials Chemistry A*, 2017, **5**, 12445-12452.
- 6. G. He, L. J. Li and A. Manthiram, Journal of Materials Chemistry A, 2015, 3, 14750-14758.

7. B. Yan, X. F. Li, Z. M. Bai, L. X. Lin, G. Chen, X. S. Song, D. B. Xiong, D. J. Li and X. L. Sun, *Journal of Materials Chemistry A*, 2017, **5**, 4850-4860.