Supporting information

Plasma modified C-doped Co₃O₄ nanosheets for oxygen evolution reaction

designed by Butler-Volmer and first principle calculations

Aoni Xu^{a, b}, Chaofang Dong^{a, *}, Ruixue Li^a, Li Wang^a, Digby D. Macdonald^b, Xiaogang Li^a

a. Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China

b. Department of Material Science and Engineer, The University of California at Berkeley, Berkeley, CA 94720, US

$OER: 4OH^- \leftrightarrow 2H_2O + O_2 + 4e^-$				
parameters	meanings	values un		
j _a	current density of anodic		A·m⁻²	
	(oxidation) direction			
j _c	current density of cathodic		A·m ⁻²	
	(reduction) direction			
η	overpotential		V	
п	stoichiometric number of	4		
	electrons involved in OER			
F	Faraday constant	96,485	Cmol ⁻¹	
k_0	rate constant when the reaction		s ⁻¹	
_	arrive equilibrium			
[R]	concentration of reductant,		mol·L ⁻¹	
	[OH ⁻]			
[O]	concentration of oxidant, [O ₂]		mol·L ⁻¹	
α	transfer coefficient	0-1		
R	ideal gas constant	8.31	J∙mol ⁻¹	
Т	temperature	298	K	
φ	electrode-electrolyte potential at		V	
	random situation			
φ_e	electrode-electrolyte potential at		V	
	equilibrium situation			
κ	transmission coefficient	1		
k	Boltzmann constant	tant 1.38×10^{-23}		

Table S1 All of parameters and their elucidations involved in theoretical study

*Corresponding author.

Tel.: +86-10-62333931-518, Fax: +86-10-62334005, *E-mail address*: cfdong@ustb.edu.cn (Chaofang Dong)

1	DI I I I	6 (2 10 34	T
\xrightarrow{h}	Planck constant	6.63 × 10 ⁻³⁴	J·s
ΔG	Gibbs activation free energy of	DFT	kJ∙mol⁻¹
	anodic (oxidation) direction		
ΔG	Gibbs activation free energy of		kJ∙mol ⁻¹
	cathodic (reduction) direction		
Ε	applied voltage on metal		V
	current-collector		
E'	actual voltage on the surface of		V
	catalyst		
E_e	equilibrium voltage of OER		V
	reaction occurred on catalyst		
	electrolyte		
$arphi_{sc}$	potential drop at the interface		V
	between metal electrode and		
	catalyst		
σ	conductivity of catalyst		S·m ⁻¹
l	thickness of catalyst		m
μ	electrochemical potentials		J∙mol ⁻¹
μ	chemical potentials		J∙mol ⁻¹
μ^0	chemical potential of the solute	Ref []	J∙mol ⁻¹
	on standard situation		
а	activity of solute	γm	mol·L ⁻¹
		$a = \frac{1}{m^0}$	
m^0	concentration of solute on	Ref []	mol·L ⁻¹
	standard situation		
Øм	absolute potential of catalyst		V
1 11	material		
φ_{sol}	absolute potential of solution		V
<u> </u>	electron affinity		J∙mol ⁻¹
Engry	vacuum level energy	assumed as zero	J·mol ⁻¹
Eumo	energy of lowest unoccupied	DFT	J·mol ⁻¹
-LUMU	molecular Oorbital		
Ецомо	energy of highest occupied	DFT	J·mol ⁻¹
PHOMO	molecular orbital		v mor
Ea	band gap of catalyst.	$E_{a} = E_{\mu\nu\rho\rho} - E_{\mu\rho\rho\rho}$	J·mol ⁻¹
$\frac{-g}{E_{r,,i}}$	Fermi level of metal current	-g = 20 MO = -10 MO	J·mol ⁻¹
-rermi	collector	constant owing to the same substrate	
W	surface work function of metal	$W_{\rm F} = E_{\rm max} - E_{\rm F}$	J·mol ⁻¹
•• F	current collector	•••• = = vacu == Fermi	
C.	almost unchanged coefficient	$0.01k_{\rm p}T\gamma$	
01	related to conductance of	$C_1 = \frac{C_1 G_1 R_B T_A}{C_1 (C_1 - 1) e^2 v_1} \exp(2\alpha x)$	
	catalvet		
	rotio of the concentration of	2/2	
c_n	ratio of the concentration of	2/3	

	Co ³⁺ over the total amount of		
	Co ions in matrix		
ν_e	attempt electronic frequency		s ⁻¹
α'	rate of wave function decay for		
	Co ion		
x	distance between two		m
	neighboring Co ions in the		
	normal spinel structure		
	corresponding to the hopping		
	distance		
E _a	activation barrier of the polaron	DFT	J·mol ⁻¹
<i>C</i> ₂	almost unchanged coefficient	$C = \frac{RT}{RT} \ln 0.01 = \frac{RT}{RT} \ln \left(\frac{nFkT * 10^{-14}}{RT} \right)$	
	related to solution properties	$C_2 = \frac{1}{\alpha n F} \ln \left(0.01 - \frac{1}{\alpha n F} \ln \left(\frac{1}{h} \right) \right) - \frac{1}{\alpha n F} \ln \left(\frac{1}{h} \right)$	
		$\frac{1}{4F}\sum_{i}n_{i}\mu_{i}^{0} - \frac{RT}{4F}\ln\frac{a[O_{2}]}{\{a[OH^{-}]\}^{4}} + \frac{RT}{\alpha nF}pH$	

Table S2 Gibbs free energy, absorption energy, zero point energy and entropy for various kinds of $\mathrm{Co}_3\mathrm{O}_4$

			TS	ZPE	ΔE_{ads}	ΔG_{ads}
Co ₃ O ₄		*0	0	0.07	2.46	2.13
		*OH	0	0.33	0.57	0.84
		*OOH	0	0.43	3.39	3.69
B-Co ₃ O ₄	octahedral	*0	0	0.07	2.31	1.93
		*OH	0	0.38	0.84	1.16
		*OOH	0	0.45	3.43	3.75
	tetrahedral	*0	0	0.07	2.53	2.18
		*OH	0	0.35	0.62	0.91
		*OOH	0	0.45	3.40	3.72
	lattice	*0	0	0.07	2.47	2.14
		*OH	0	0.34	0.88	1.16
		*OOH	0	0.43	3.39	3.68
C-Co ₃ O ₄	octahedral	*0	0	0.08	2.70	2.36
		*OH	0	0.35	0.74	1.03
		*OOH	0	0.45	3.21	3.52
	tetrahedral	*0	0	0.07	2.70	2.38
		*OH	0	0.32	0.76	1.02
		*OOH	0	0.45	2.94	3.26
	lattice	*0	0	0.07	2.68	2.35
		*OH	0	0.33	0.53	0.80
		*OOH	0	0.43	3.18	3.48
N-Co ₃ O ₄	octahedral	*0	0	0.07	2.73	2.40
		*OH	0	0.33	0.68	0.95
		*OOH	0	0.42	3.68	3.97
	tetrahedral	*0	0	0.06	2.46	2.13

		*OH	0	0.32	0.84	1.10
		*OOH	0	0.45	2.93	3.26
	lattice	*0	0	0.08	2.39	2.05
		*OH	0	0.35	0.58	0.87
		*OOH	0	0.43	3.21	3.50
P-Co ₃ O ₄	octahedral	*0	0	0.07	2.93	2.60
		*OH	0	0.33	0.51	0.78
		*OOH	0	0.45	2.98	3.30
	tetrahedral	*0	0	0.08	2.11	1.80
		*OH	0	0.32	0.34	0.60
		*OOH	0	0.43	3.02	3.31
	lattice	*0	0	0.08	2.52	2.19
		*OH	0	0.34	0.52	0.80
		*OOH	0	0.43	3.47	3.76
Vo	lattice	*0	0	0.07	2.32	2.00
		*OH	0	0.32	0.43	0.69
		*OOH	0	0.41	3.07	3.35
		H ₂ O	0.58	0.57		
		H_2	0.41	0.27		

Fig. S1 The effect of multiple carbon atoms in the unit Co_3O_4 cell.

Fig. S2 SEM and EDS results for the section of C-doped Co₃O₄ under 300 W treatment

Fig. S3 GIXRD patterns of C-doped Co₃O₄ sample under 300 W with (a) 1°; (b) 5°; (c) 10° input angle and (d) XRD pattern.

Fig. S4 CV plots for (a) pristine Co₃O₄; (b) treated under 200 W; (c) 300 W; (d) 400 W; (e) 500 W; (f) ECSA determined by the capacitive currents at 1.19 V vs. RHE

Fig. S5 (a) EIS plots for various kinds of Co₃O₄; (b) equivalent circuit diagram for fitting EIS.

	$R_{ct}\left(\Omega ight)$	TOF (s^{-1})
Co ₃ O ₄	7.12	3.32×10 ⁻³
C-Co ₃ O ₄ -200 W	3.72	5.20×10 ⁻³
C-Co ₃ O ₄ -300 W	1.47	8.86×10 ⁻³
C-Co ₃ O ₄ -400 W	3.50	5.13×10 ⁻³
C-Co ₃ O ₄ -500 W	5.19	4.67×10 ⁻³

Table S3 Fitting results of Ret from EIS and TOF for various kinds of Co₃O₄

Fig. S6 (a) Chronoamperometry curve of C-Co₃O₄ sample treated at 300 W; (b) (d) FESEM, (c) (d) HRTEM and (f) Live Fast Fourier Transform (FFT) images of C-Co₃O₄ after stability tests.