Supplementary Information

Li₇La₃Zr₂O₁₂ ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries

Yang Li,[†] Wei Zhang,[†] Qianqian Dou, Ka Wai Wong and Ka Ming Ng^{*}

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.

*Corresponding Author: Ka Ming Ng (kekmng@ust.hk), Fax: +852-23580054; Tel:

+852-23587238

[†]The authors contributed equally.

Scheme S1. Schematic electrospinning setup of garnet-PVP nanofibers.

Scheme S2. Schematic procedure for the fabrication of the PVDF-HFP/LiTFSI/LLZO membranes.

Fig. S1. ¹H NMR measurement of PVDF-HFP/LiTFSI/LLZO membrane.

Fig. S2. SEM image of the PVDF-HFP/LiTFSI/LLZO membrane with 20 wt% LLZO nanofibers.

Fig. S3. (a) SEM image of LLZO nanoparticles, and photo of PVDF-HFP-based electrolyte with LLZO nanoparticles. (b) Comparison of ionic conductivity of CPEs containing LLZO nanofibers and LLZO nanoparticles.

Table S1. Liqu	uid electrolyte u	ptakes in	PVDF-HFP/L	LiTFSI/LLZO	CPEs.
----------------	-------------------	-----------	------------	-------------	-------

Sample	W ₀ (g)	W ₁ (g)	Uptake	
1	0.072	0.08	11.1%	
2	0.067	0.074	10.4%	
3	0.075	0.082	9.3%	

Liquid electrolyte uptakes were measured by weighting method. First, the dry PVDF-HFP/LiTFSI/LLZO CPE membranes were cut into round pieces and weighted as W₀. After soaked in PC/LiTFSI liquid electrolyte solution for 20 min, the excess electrolyte solution on the surface of the membranes was removed by wiping with a tissue paper, and then weighted as W₁. The liquid uptake is calculated by the following equation:

Uptake (%) =
$$(W_1 - W_0)/W_0 \times 100\%$$

	Electrolyte	Liquid electrolyte uptake (%)	Ionic conductivity (mS cm ⁻¹)	Stress (MPa)/ Stress (%)
	PVDF-HFP/LLZO	10	0.95	5.3/25
GPE	PVDF/cellulose	267	1.33	2.83/5.92
	PVDF-HFP/Al ₂ O ₃	371	0.7	17/20
	PVDF-HFP/TiO ₂	125	0.98	9.69/74.4
	PVDF-HFP/BaTiO3	462	0.104	—/—
	PVDF-HFP/PEO/GO	368	2.1	_/_
	PVDF-HFP/PEO/PMMA	75	0.81	_/_
	PVDF/polymer-blend	81	3.5	_/_
SPE	PVDF/PMMA	0	0.031	_/_
	PVDF-HFP	0	0.078	_/_

Table S2. A comparison of ionic conductivities and mechanic properties of PVDF or PVDF-based gel or solid polymer electrolytes (GPE or SPE) from representative works and ours.^{1–8}

Fig. S4. A comparison of ionic conductivities of ceramic nanofiller-incorporated composite polymer electrolytes from representative works and ours.^{9–22}

References

- X. Zuo, X. Ma, J. Wu, X. Deng, X. Xiao, J. Liu and J. Nan, *Electrochim. Acta*, 2018, **271**, 582–590.
- 2 S. Ali, C. Tan, M. Waqas, W. Lv, Z. Wei, S. Wu, B. Boateng, J. Liu, J. Ahmed and J. Xiong, *Adv. Mater. Interfaces*, 2018, **5**, 1701147.
- 3 Z. Li, H. Zhang, P. Zhang, Y. Wu and X. Zhou, J. Power Sources, 2008, 184, 562–565.
- 4 P. Raghavan, X. Zhao, J. K. Kim, J. Manuel, G. S. Chauhan, J. H. Ahn and C. Nah, *Electrochim. Acta*, 2008, 54, 228–234.
- 5 G. Chen, F. Zhang, Z. Zhou, J. Li and Y. Tang, *Adv. Energy Mater.*, 2018, **8**, 1801219.
- 6 J. Shi, Y. Yang and H. Shao, J. Membr. Sci., 2018, 547, 1–10.
- 7 C. Costa, J. G. Ribelles, S. Lanceros-Méndez, G. Appetecchi and B. Scrosati, J. Power Sources, 2014, 245, 779–786.
- 8 C. M. Costa, M. M. Silva and S. Lanceros-Mendez, *RSC Adv.*, 2013, **3**, 11404–11417.
- 9 H. Li, M. Li, S. H. Siyal, M. Zhu, J.L. Lan, G. Sui, Y. Yu, W. Zhong and X. Yang, J. Membr. Sci., 2018, 555, 169–176.
- 10 Q. Yi, W. Zhang, S. Li, X. Li and C. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 35039–35046.
- X. Shi, N. Ma, Y. Wu, Y. Lu, Q. Xiao, Z. Li and G. Lei, *Solid State Ionics*, 2018, 325, 112–119.
- 12 X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C. W. Nan and Y. Shen, *J. Am. Chem. Soc.*, 2017, **139**, 13779–13785.
- 13 Y. Liang, S. Deng, Y. Xia, X. Wang, X. Xia, J. Wu, C. Gu and J. Tu, *Mater. Res. Bull.*, 2018, **102**, 412–417.
- 14 K. K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen and C. Yan, *Proc. Natl Acad. Sci.*, 2016, **113**, 7094–7099.
- 15 W. Liu, N. Liu, J. Sun, P. C. Hsu, Y. Li, H. W. Lee and Y. Cui, *Nano Lett.*, 2015, 15, 2740–2745.
- 16 P. Zhu, C. Yan, M. Dirican, J. Zhu, J. Zang, R. K. Selvan, C. C. Chung, H. Jia, Y. Li and Y. Kiyak, N. Wu, X. Zhang, *J. Mater. Chem. A*, 2018, **6**, 4279–4285.

- 17 Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. Yang,F. Kang and Y. He, *Adv. Funct. Mater.*, 2018, 1805301.
- 18 J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, *Nano Energy*, 2016, 28, 447–454.
- 19 X. Wang, Y. Zhang, X. Zhang, T. Liu, Y. H. Lin, L. Li, Y. Shen and C. W. Nan, ACS Appl. Mater. Interfaces, 2018, 10, 24791–24798.
- 20 P. Yao, B. Zhu, H. Zhai, X. Liao, Y. Zhu, W. Xu, Q. Cheng, C. Jayyosi, Z. Li and J. Zhu, K. M. Myers, X. Chen and Y. Yang, *Nano Lett.*, 2018, 18, 6113–6120.
- L. Chen, Y. Li, S. P. Li, L. Z. Fan, C. W. Nan, J. B. Goodenough, *Nano Energy*, 2018, 46, 176–184.
- 22 W. Zhang, J. Nie, F. Li, Z. L. Wang and C. Sun, *Nano Energy*, 2018, **45**, 413–419.