Supplementary Information for

Directed Synthesis of SnO₂@BiVO₄/Co-Pi Photoanode for Highly Efficient

Photoelectrochemical Water Splitting and Urea Oxidation

Jingchao Liu^a, Jianming Li^b, Mingfei Shao*^a and Min Wei^a

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

^b Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration

& Development (RIPED), PetroChina, Beijing 100083, China *Corresponding author. E-mail: shaomf@mail.buct.edu.cn

sin .				Spectrum 1
	Element	Weight%	Atomic%	
	O K	21.12	66.54	
	P K	0.09	0.14	
	VK	2.62	2.59	
•	Co K	0.36	0.31	
	Sn L	66.18	28.10	
	Bi M	9.63	2.32	
P		•	9 ⁶⁾	
0 2 4 6 8 Full Scale 2366 cts Cursor: 0.000	10	12 14	16 18	20 keV

Fig. S1 EDX spectra and corresponding elemental contents of SnO₂@BiVO₄/Co-Pi NRAs.

Fig. S2 XPS spectra of BiVO₄ and SnO₂@BiVO₄/Co-Pi photoanode: the survey spectrum (a) and high resolution XPS spectrum of Sn 3d (b), Bi 4f (c), V 2p (d). XPS spectra of SnO₂@BiVO₄/Co-Pi Photoanode: Co 2p (e) and P 2p (f).

Fig. S3 Top-view SEM images of (a) 25-SnO₂, (b) 50-SnO₂, (c) 100-SnO₂, (d) 100*-SnO₂ and (e) 150-SnO₂, respectively. Cross-sectional SEM images and EDX mappings of (f) 25-SnO₂@BiVO₄, (g) 50-SnO₂@BiVO₄, (h) 100-SnO₂@BiVO₄, (i) 100*-SnO₂@BiVO₄ and (j) 150-SnO₂@BiVO₄, respectively.

Fig. S4 (a) Current–potential curves of the photoanodes under AM 1.5 G illumination in 0.1M PBS. (b) EIS measured at 1.23 V *vs.* RHE under illumination. Inset: Corresponding equivalent circuit. R_{ct} is the charge-transfer resistance across the electrode/electrolyte interface, R_s is the solution resistance, and CPE is the constant phase component. (c) Charge separation efficiency and (d) Charge injection efficiency *vs.* potential curves for the samples of BiVO₄, 25-SnO₂@BiVO₄, 50-SnO₂@BiVO₄, 100-SnO₂@BiVO₄, 150-SnO₂@BiVO₄ and 100*-SnO₂@BiVO₄, respectively.

Fig. S5 (a) Charge separation efficiency and (b) Charge injection efficiency *vs.* potential curves for the samples of BiVO₄, 100-SnO₂@BiVO₄ and 100-SnO₂@BiVO₄/Co-Pi, respectively.

Fig. S6 (a) O_2 evolution (black curve) on SnO_2 @BiVO₄/Co-Pi photoanode at bias of 1.23 V vs. RHE. Red line is the theoretical result based on the number of transferred electrons. (b) Faradaic efficiency of the triadic photoanode for water oxidation. Symbols represent the data calculated from the experimental results. Solution, 0.1 M PBS (pH 7); scan rate, 20 mV s⁻¹; and AM1.5G (intensity: 100 mW cm⁻²), back-side illumination. (c) and (d) are obtained in 0.1M PBS + 2% urea.

Fig. S7 Mott-Schottky curves of (a) SnO_2 and (b) $BiVO_4$. (c) Schematic illustration of the band alignment of SnO_2 and $BiVO_4$. (d) The ultraviolet photoelectron spectroscopy (UPS) for determining the valence band edge positions of SnO_2 and $BiVO_4$.

Photoanode materials	Electrolyte	Photocurrent density (1.23 V vs. RHE)	Efficiency (IPCE value at 400 nm)	Stability	Ref
Mo:BiVO ₄ /SnO ₂ /Si	0.5 M PBS (pH 7)	2.91	35%	~75% (30h)	1
BiVO ₄ /WO ₃ /SnO ₂	$0.5 \text{ M Na}_2\text{SO}_4 + 0.1 \text{ M NaPi}$	1.50	30%	Not given	2
Sb:SnO ₂ / BiVO ₄ NRAs	0.5 M PBS (pH 7)	1.70	Not given	~95% (1800s)	3
SnO ₂ /BiVO ₄	0.5 M Na ₂ SO ₄ + 0.1 M KPi (pH 7)	0.95	Not given	Not given	4
BiVO ₄ /SnO ₂	0.2 M sodium borate	0.60	13.47%	~95% (300s)	5
BiVO ₄ /SnO ₂ /WO ₃	0.5 M PBS (pH 7)	2.38	40%	88.6% (900s)	6
SnO ₂ /BiVO ₄	0.5 M Na ₂ SO ₄ + 0.1 M NaPi (pH 7)	1.60	30%	~60% (1000s)	7
BiVO ₄ /SnO ₂	$0.3 \text{ M Na}_2\text{SO}_4 + \text{KPi (pH 7.5)}$	0.60	15%	Not given	8
C-QDs/ BiVO ₄ /SnO ₂	0.5 M Na ₂ SO ₄ (pH 6.6)	2.20	10%	~75% (3600s)	9
Fe/NiOOH- Mo:BiVO ₄ /WO ₃	$0.5 \text{ M Na}_2\text{SO}_4 + 0.1 \text{ M Na}_2\text{SO}_3$ (nH 7)	5.79 ($J_{sulfite}$)	80% (sulfite)	97% (7200s)	10
Oxygen Vacancies -BiVO ₄ /CoPi	0.5 M KPi (pH 7)	3.42	Not given	~90% (10h)	11
WO ₃ /BiVO ₄	0.5 M KPi (pH 7.2)	1.35	35%	Not given	12
Ni ₄ O ₄ /BiVO ₄	0.2 M PBS (pH 7)	3.9	75%	~60% (1800s)	13
W-Doped BiVO ₄ /Co-Pi	0.1 M PBS (pH 7)	4.0	Not given	~95% (3600s)	14
Mo-Doped BiVO ₄ /Fe(Ni)OOH	0.5 M PBS (pH 7)	6.0	90%	~100% (6h)	15
SnO ₂ @BiVO ₄ /Co-Pi	0.1 M PBS (pH 7)	2.63	47.4%	90.2% (3600s)	This work

Table S1. Summary of recent key advances in BiVO₄-based photoanodes for PEC water splitting under AM 1.5G illumination.

* J_{sulfite} means photocurrent for sulfite oxidation.

Electrode materials	Electrolyte	Onset oxidation potential	Year	Ref
Ni catalyst	0.1 M urea + 1.0 M KOH	0.35 V vs. Ag/AgCl	2016	16
Ni nanowire arrays	1.0 M urea + 6.0 M KOH	-0.2 V vs. Ag/AgCl	2016	17
Nickel Manganese Oxide	0.33 M urea + 1.0 M KOH	0.29 V vs. Ag/AgCl	2016	18
Ni(OH) ₂ nanosheets	0.33 M urea + 1.0 M KOH	0.34 V vs. Ag/AgCl	2016	19
2D ultrathin MnO_2	0.5 M urea + 1.0 M KOH	0.32 V vs. Ag/AgCl	2016	20
Nickel phosphates	0.1 M urea + 1.0 M KOH	0.33 V vs. Ag/AgCl	2017	21
Se-Ni(OH) ₂ @NiSe	0.33 M urea + 1.0 M KOH	0.30 V vs. SCE	2017	22
Ni-Mo/graphene nanocatalysts	0.33 M urea + 1.0 M KOH	0.36 V vs. Ag/AgCl	2017	23
2D Ni-MOF	0.33 M urea + 1.0 M KOH	1.36 V vs. RHE	2017	24
MnO ₂ /MnCo ₂ O ₄ /Ni core–shell heterostructure	0.5 M urea + 1.0 M KOH	1.33 V vs. RHE	2017	25
β Ni(OH) ₂	0.33 M urea + 1.0 M KOH	1.36 V vs. RHE	2018	26
Ni-WC/C catalyst	0.33 M urea + 1.0 M KOH	0.40 V vs. Hg/HgO	2018	27
Ni ₂ P@Ni foam	0.6 M urea + 5.0 M KOH	0.24 V vs. Ag/AgCl	2018	28
NiCo ₂ O ₄	0.33 M urea + 1.0 M KOH	0.38 V vs. Hg/HgO	2018	29
NiMoO ₄ nanosheets	0.5 M urea + 1.0 M KOH	0.34 V vs. Ag/AgCl	2018	30
α -Ni(OH) ₂ nanosheets	0.33 M urea + 1.0 M KOH	0.35 V vs. Ag/AgCl	2018	31
Ni-TiO ₂	0.33 M urea + 1.0 M NaOH	1.37 V vs. RHE (dark) 0.10 V vs. RHE (light)	2012	32
Ni(OH) ₂ /Ti-Fe ₂ O ₃	0.1 M urea + 1.0 M KOH	Not given (dark) 0.50 V vs. RHE (light)	2015	33
SnO ₂ @BiVO ₄ /Co-Pi	0.33 M urea + 0.1 M PBS	1.60 V vs. RHE (dark) 0.20 V vs. RHE (light)	This work	

Table S2. Summary of electrochemical and PEC oxidation of urea in recent three years.

References:

- (1) L. Zhang, X. Ye, M. Boloor, A. Poletayev, N. A. Melosh and W. C. Chueh, *Energy Environ. Sci.*, 2016, **9**, 2044 2052.
- (2) S. M. López, C. Fàbrega, D. M. Satoca, M. D. H. Alonso, G. P. Pérez, A. Morata, J. R. Morante and T. Andreu, *ACS Appl. Mater. Interfaces* 2016, **8**, 4076 4085.
- (3) L. Zhou, C. Zhao, B. Giri, P. Allen, X. Xu, H. Joshi, Y. Fan, L. V. Titova and P. M. Rao, *Nano Lett.* 2016, **16**, 3463 3474.
- (4) S. Byun, B. Kim, S. Jeon and B. Shin, J. Mater. Chem. A, 2017, 5, 6905 6913.
- (5) M. Xie, Z. Zhang, W. Han, X. Cheng, X. Li and E. Xie, *J. Mater. Chem. A*, 2017, **5**, 10338–10346.
- (6) J. H. Baek, B. J Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho and H. S. Jung, *ACS Appl. Mater. Interfaces* 2017, **9**, 1479 1487.
- (7) S. S. M. Bhat, J. M. Suh, S. Choi, S. Hong, Sol A. Lee, C. Kim, C. W. Moon, M. G. Lee and H.
 W. Jang, *J. Mater. Chem. A*, 2018, 6, 14633 14643.
- (8) S. Chen, J. Yang and J. Wu, ACS Appl. Energy Mater. 2018, 1, 2143 2149.
- (9) Z. Zhang, X. Jiang, J. Mei, Y. Li, W. Han, M. Xie, F. Wang and E. Xie, *Chem. Eng.J.* 2018, **331**, 48-53.
- (10) K. Kim, S. K. Nam, J. H. Park and J. H. Moon, *J. Mater. Chem. A* 2019, DOI: 10.1039/c8ta09886g.
- (11) S. Byun, G. Jung, Y. Shi, M. Lanza and B. Shin, *Adv. Funct. Mater.* 2019, 1806662. DOI: 10.1002/adfm.201806662.
- (12) Y. Liu, B. R. Wygant, K. Kawashima, O. Mabayoje, T. E. Hong, S. Lee, J. Lin, J. Kim, K. Yubuta, W. Li, J. Li and C. B. Mullins, *Appl. Catal. B- Environ.* 2019, 245, 227 239.
- (13) B. Gao, T. Wang, X. Fan, H. Gong, P. Li, Y Feng, X Huang, J He and J. Ye, *J. Mater. Chem. A*, 2019, **7**, 278–288.
- (14) L. Han, F. F. Abdi, R. van de Krol, R. Liu, Z. Huang, H.-J. Lewerenz, B. Dam, M. Zeman and A. H. M. Smets, *ChemSusChem*, 2014, 7, 2832 2838.
- (15) S. Xiao, C. Hu, H. Lin, X. Meng, Y. Bai, T. Zhang, Y. Yang, Y. Qu, K. Yan, J. Xu, Y. Qiu and
 S. Yang, *J. Mater. Chem. A*, 2017, 5, 19091 19097.
- (16) F. Guo, K. Ye, M. Du, X. Huang, K. Cheng, G. Wang and D. Cao, Electrochim. Acta. 2016, 210,

474 - 482.

- (17) F. Guo, K. Ye, M. Du, K. Cheng, Y. Cao, G. Wang and D. Cao, *Electrochim. Acta.* 2016, **190**, 150 158.
- (18) S. Periyasamy, P. Subramanian, E. Levi, D. Aurbach, A Gedanken and A. Schechter, ACS Appl.
 Mater. Interfaces 2016, 8, 12176 –12185.
- (19) X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X. Zeng, C. Wu, and Y Xie, *Angew. Chem.* 2016, **128**, 12653–12657.
- (20) S. Chen, J. Duan, A. Vasileff and S. Qiao, Angew. Chem. Int. Ed. 2016, 55, 3804-3808.
- (21) X. Song, L. Gao, Y. Li, W. Chen, L. Mao and J. Yang, *Electrochim. Acta.* 2017, 251, 284 292.
- (22) C. Tang, Z. Zhao, J. Chen, B. Li, L. Chen and C. Li, *Electrochim. Acta.* 2017, 248, 243 249.
- (23) W. Shi, R. Ding, X. Li, Q. Xu and E. Liu, *Electrochim. Acta*. 2017, 242, 247 259.
- (24) D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du and S. Qiao, Chem. Commun., 2017, 53, 10906 10909.
- (25) C. Xiao, S. Li, X. Zhang and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 7825–7832.
- (26) R. K. Singh and A. Schechter, *Electrochim. Acta.* 2018, 278, 405 411.
- (27) L. Wang, S. Zhu, N. Marinkovic, S. Kattel, M. Shao, B. Yang and J. G. Chen, *Appl. Catal. B-Environ.* 2018, **232**, 365 – 370.
- (28) G. Wang, K. Ye, J. Shao, Y. Zhang, K. Zhu, K. Cheng, J. Yan, G. Wang and D. Cao, *Int. J. Hydrogen Energy*, 2018, **43**, 9316 9325.
- (29) A. Schranck, R. Marks, E. Yates and K. Doudrick, *Environ. Sci. Technol.* 2018, **52**, 8638 8648.
- (30) Y. Tong, P. Chen, M. Zhang, T. Zhou, L. Zhang, W. Chu, C. Wu, and Y. Xie, *ACS Catal.* 2018, **8**, 1 7.
- (31) C. Lin, Z. Gao, F. Zhang, J Yang, B. Liu and J. Jin, J. Mater. Chem. A, 2018, 6, 13867 13873.
- (32) G. Wang, Y. Ling, X. Lu, H. Wang, F. Qian, Y. Tong and Yat Li, *Energy Environ. Sci.*, 2012, **5**, 8215 8219.
- (33) D. Xu, Z. Fu, D. Wang, Y. Lin, Y. Sun, D. Meng and T. Xie, *Phys. Chem. Chem. Phys.*, 2015, 17, 23924 23930.