Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Plasmonic Ru/Hydrogen Molybdenum Bronze with Tunable Oxygen

Vacancies for Light-Driven Reduction of *p*-Nitrophenol

Haibo Yin,^a Yasutaka Kuwahara,^{ab} Kohsuke Mori,^{abc} Michel Che,^d and Hiromi Yamashita^{ab*}

^{a.} Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
^{b.} Unit of Elements Strategy Initiative for Catalyst & Batteries (ESICB), Kyoto University, Kyoto, 615-8245, Japan.
^{c.} JST, PRESTO, 4-1-8 HonCho, Kawaguchi, Saitama, 332-0012, Japan.
^{d.} Institut Universitaire de France and Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie-Paris 6 (France)
*Corresponding Author E-mail: yamashita@mat.eng.osaka-u.ac.jp

Figure S1. a) UV-vis-NIR diffuse reflectance spectra and b) XRD patterns of the MoO₃ before and after H₂ reduction at 300 °C. c) N₂ adsorption-desorption isotherms of Ru/MoO₃ and Ru/H_xMoO_{3-y} hybrid.

Figure S2. a) UV-vis-NIR diffuse reflectance spectra of the Ru/MoO₃ and Ru/SiO₂ hybrids before and after H₂ reduction at 100 °C. b) The absorbance different between the Ru/MoO₃ and Ru/SiO₂ hybrids after H₂ reduction at 100 °C through subtraction of their corresponding UV-vis-NIR diffuse reflectance spectra in a).

Figure S3. a) Mo *K*-edge XANES and b) FT-EXAFS spectra for the Ru/MoO₃ samples before and after H₂ reduction and reference materials (MoO₃ and MoO₂).

Figure S4. a) UV-vis-NIR diffuse reflectance spectra of Ru/MoO_3 samples after H_2 reduction at different temperatures. b) XRD patterns of the $Ru/HxMoO_{3-y}$ (250 and 300).

Figure S5. UV-vis-NIR diffuse reflectance spectra of Ru/WO₃ before and after H₂ reduction at 250 °C, respectively.

Figure S6. a) XRD patterns of the Ru/H_xWO_{3-y} (250). b) TEM image of the Ru/WO₃ after H₂ reduction at 250 °C and (inset) the corresponding particle size distribution of Ru NPs. c) Ru *K*-edge XANES and d) FT-EXAFS spectra for the Ru/WO₃ after H₂ reduction at 250 °C and reference materials (Ru foil and RuO₂)

Figure S7. a) UV-vis-NIR diffuse reflectance spectra and b) XRD patterns of the WO₃ before and after H₂ reduction at 300 °C.

Figure S8. XRD patterns of a) the Ru/WO_3 and b) Ru/WO_3 samples after H_2 reduction at different temperatures. c) UV-vis-NIR diffuse reflectance spectra of Ru/WO_3 samples before and after H_2 reduction at different temperatures.

Figure S9. Time-dependent evolution of UV-vis absorption spectra of reaction solutions without catalyst a) in the dark and b) under visible irradiation ($\lambda > 420$ nm). c) Plots of relative concentration of *p*-nitrophenol over Ru/H_xMoO_{3-y} (100) catalyst and reference samples as a function of time. d) Plots of relative concentration of Ru/MoO₃ against the initial point at 317 nm peak for PNP as a function of time. e) UV-vis-NIR diffuse reflectance spectra and f) comparison of catalytic activity in the hydrogenation of *p*-nitrophenol over Ru/MoO₃ samples under different ratios reducing atmosphere of Ar (mL/min) : H₂ (mL/min).

Catalysts	Reaction	Hydrogen	TOF/h ⁻¹	Ref.
	condition	source	(mol of PAP/mol of catalyst*h)	
Ru/H_xMoO_{3-y}	H ₂ O, 298.15 K	H_2	2.8	This study
	$\lambda > 420 \ nm$			
Ru/H_xMoO_{3-y}	H ₂ O, 298.15 K	H_2	0.14	This study
	$\lambda > 420 \ nm$			
Pd/MoO_3	H ₂ O, 298.15 K	NH ₃ BH ₃	6.50	J. Am. Chem. Soc. 2016,
H_2 - RT	$\lambda > 420 \ nm$			138, 9316-9324.
Cu-Ag-Au	H ₂ O, 300 K	NaBH4	18.60	Environ. Sci. Technol. 2016,
alloy				50, 11263-11273.
Reduced	H ₂ O, 303.15 K	NaBH4	0.50	Appl. Catal., B 2017, 209,
Co_3O_4				648-656.
$Cu_2O@h-BN$	H_2O	$NaBH_4$	~ 0.50	ACS Appl. Mater. Interfaces
(boron nitride)				2014, 6, 14469-14476.
Au/HCNM	H ₂ O, 295.15 K	NaBH4	64	ACS Sustainable Chem.
				Eng. 2013, 1, 746-752.
NM/MoS ₂ NSs	H_2O	NaBH4	0.20	Cryst. Growth Des. 2017,
				17, 3538-3547.
AuNPs-SPEG	H_2O	NaBH4	1.14	ACS Catal. 2016, 6,
				5553-5560.
pf-	H_2O , room	NaBH4	~ 20	ACS Catal. 2017, 7,
Au@SiO2 NPs	temperature			<i>5391-5398</i> .
Co-colloid	THF, 373 K	THF	51.84	Chem. Commun., 2005, 0,
				2026-2028
NiPd-colloid	THF, 373 K	THF	~ 70.77	Chem. Commun., 2005, 0,
				2026-2028

 Table S1 Summary of PNP reduction by using the reported catalysts.

Figure S10. UV-vis-NIR diffuse reflectance spectra of a) Au/MoO₃ and b) Ru/TiO₂ samples before and after H₂ reduction at different temperatures. c) Comparison of catalytic activity in the hydrogenation of *p*-nitrophenol over Au/H_xMoO_{3-y} (250) and Ru/TiO₂ (100) after 90 min of reaction.

Scheme S1. Proposed mechanism of PNP hydrogenation on Ru/H_xMoO_{3-y} (T) without H_2 gas atmosphere.