Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry A

This journal is © The Royal Society of Chemistry 2018

Supporting Information for

WO₃ Nanolayer Coated 3D-Graphene/Sulfur Composites for High Performance Lithium/Sulfur Batteries

Sinho Choi^{a†}, Dong Han Seo^{b†}*, Mohammad Rejaul Kaiser^{b†}, Chunmei Zhang^c, Timothy van der laan^{b,c}, Zhao Jun Han^b, Avi Bendavid^b, Xin Guo^a, Samuel Yick^b, Adrian T Murdock^b, Dawei Su^a, Bo Ram Lee^d, Aijun Du^c, Shi Xue Dou^e, and Guoxiu Wang^a*

^aCentre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.

^bCSIRO Manufacturing, P.O. Box 218, 36 Bradfield Road, Lindfield, NSW 2070, Australia.

^cInstitute for Future Environments and Institute for Health and Biomedical Innovation, School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology,

Brisbane, QLD 4000, Australia.

^dDepartment of Physics, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.

^eInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia.

^{*f*}KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan 44919, South Korea.

This PDF file includes:

Figs. S1 to S14

Figure S1. Photographs of the different steps of synthesizing the S@G@WO₃ composite with soybean oil as the precursor and Ni foam as the template.

Figure S2. Raman spectra of graphene, WO₃ and WO₃/Graphene composite.

Figure S3. SEM image of 3D graphene (a) before and (b) after Ni foam is etched.

Figure S4. EDS analysis of column-a) Ni foam template, column-b) graphene-coated Ni foam (before HCl etch) and column-c) 3D graphene foam (after HCl etch).

This journal is © The Royal Society of Chemistry 2018

Figure S5. SEM images of (a-c) graphene-coated Ni Foam, (d-f) WO₃-coated Ni Foam and (g-i) WO₃/graphene-coated Ni Foam at different magnifications.

Figure S6. (a) Charge discharge curves at 0.8 A/g of S@G@WO₃ electrode at 1st (black), 100th (red), 500th cycles (blue) and (b) CV curve of S@G@WO₃ electrode at 0.75 mV/s.

Figure S7.(a) CV curves of S@G@WO₃ electrode at constant scan rate of 0.2mV/s, one can observe disappearance of 3^{rd} peak during the discharging process after 3^{rd} cycles (b) CV curves of S@G@WO₃ electrode at different scan rates (0.2mV/s ~ 2mV/s).

This journal is © The Royal Society of Chemistry 2018

Figure S8. (a) Charge discharge curve (1^{st} cycle) at 1.6 A/g of S@G@WO₃ electrode and (b) cycling performance (capacity and Coulombic efficiency) at 1.6 A/g (~ 1C).

Figure S9. Nyquist plots of the (a) S@G and (b) S@G@WO₃ electrode.

Figure S10. Raman spectra of the graphene-free WO₃/Ni cathode before and after adsorption of Li₂S₆.

Figure S11. XPS survey spectra of S@G@WO₃ electrode (a) before, (b) after charging, (c) after discharging cycles.

Figure S12. (a) The top photos show a time series (0 hours to 6 hours) for the absorption of Li_2S_6 by WO_3 , the bottom UV-Vis absorption spectra shows the capability of Li_2S_6 polysulfide absorption by WO_3 (blue line) and SiO_2 (red line) and (b) the bar chart shows the comparison of absorption of Li_2S_6 for different concentrations by WO_3 and SiO_2 .

This journal is © The Royal Society of Chemistry 2018

Figure S13. Photos and visual observations of Li_2S_6 polysulfide absorption by SiO_2 and WO_3 at different concentrations.

Figure S14. Raman analyses of the commercial (a) SiO₂ and (b) WO₃ powders before and after adsorption of Li₂S₆.