Introduction of carbon nanodots into SnO₂ electron transport

layer for efficient and UV stable planar perovskite solar cells

Shuo Wang^a, Yu Zhu^a, Bao Liu^a, Chengyan Wang^{a,b} *, Ruixin Ma^{a,c} *

a School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China b Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083, PR China

*Corresponding author: Chengyan Wang E-mail: chywang@yeah.net (C.Wang). Ruixin Ma E-mail: maruixin@ustb.edu.cn (R.Ma)

Fig. S1 The TEM image of the SnO₂ particles obtained from the SnO₂ nanocolloid.

Fig. S2 XRD patterns of SnO₂ and SnO₂:CNDs.

Fig. S3 XPS spectra of (b) C 1s, (c) O 1s and (d) Sn 3d peaks of SnO₂ and SnO₂:CNDs.

Fig. S4 Up-conversion luminesce spectrum of SnO₂ and SnO₂:CNDs films with various amount of CNDs deposited on quartz glass. (excitation Source: 980 nm)

Fig. S5 UV-vis absorption spectra of the perovskite film deposited on (a) SnO_2 and (b) SnO_2 :CNDs.

Fig. S6 The Top-view SEM images of (a) SnO_2 and modified SnO_2 doped with different amount of CNDs. (b) 14mg, (c) 21mg and (d) 28 mg.

Fig. S7 The AFM images of the SnO2 and SnO2:CNDs films

Fig. S8 The Elemental maps of (a) SnO₂:CNDs thin film. (b) Sn, (c) O and (d) C.

Fig. S9 The current density-voltage curves of the device based on the SnO₂ ETLs with different amount of CNDs.

Fig. S10 (a) J_{sc} dependence on light intensity. (b) V_{oc} dependence on light intensity.

Fig. S11 EQE spectra of the device based on SnO₂ and SnO₂:CNDs.

Fig. S12 Nyquist plot of the cells based on SnO₂ and SnO₂:CNDs measured with the frequency range from 1 MHz to 100 Hz under AM 1.5G irradiation at a direct current bias of 0 V. Symbols are experimental data and solid lines correspond to the fits using

the equivalent circuit (inset).

Fig. S13 Photographs of the SnO₂ device and SnO₂:CNDs device under UV continuous illumination for 200h.

Fig. S14 Long-term stability of the devices in dry condition for 1200 h. All the devices are measured without any encapsulation.

-	ETL	Slope	Ν			
_		$(10^{13} \times F^{-2} V^{-1})$	$(10^{18} \times \text{cm}^{-3})$			
-	SnO ₂	5.99	7.37			
	SnO ₂ :CNDs	5.19	8.51			

Table S1 Slope of the Mott-Schottky plots and doping densities of ETLs.

Table S2 The parameters of the device based on different ETLs.

_	Sample	J _{sc} (mA/cm ²)	$V_{oc}\left(V ight)$	FF	PCE (%)
ſ	SnO ₂	22.51	1.08	0.76	18.54
	SnO ₂ +7CNDs	22.67	1.07	0.79	19.17
	SnO ₂ +14CNDs	23.14	1.10	0.79	20.03
	SnO ₂ +21CNDs	21.38	1.03	0.76	16.67