Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information for

Solvent-free carbothermal synthesis of 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutant

Xiao-Hu Dai^{a,b}, Hao-Xiang Fan^a, Chun-Yan Yi^c, Bing Dong^{a,b}, Shi-Jie Yuan^{a,b}*

^a State Key Laboratory of Pollution Control and Resource Reuse, College of

Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092,

China

° Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai,

200031, China

*Corresponding author:

Dr. Shi-Jie Yuan, Phone: +86-21-65986297; Fax: +86-21-65983602; E-mail: ysj@tongji.edu.cn

Scheme s1. Schematic illustration of the procedure used to construct the nZVI/biochar OCF-850.

Starting materials	Fe preloaded process	Reduction process	Structure	PMS/PMS catalyst	Fenton catalyst	Reference
old corrugated	shear mixing	carbonization	granhene oxide-like	30 mg/L BPA were nearly	30 mg/L BPA were	This work
old collugated	sical mixing	caroonization	2D his shar	so mg/L BI A were nearly		THIS WORK
containers,			2D blochar	completely removed in	nearly completely	
FeCl ₃ ·6H ₂ O			stabilized nZVI	15 min at pH 7	removed in 25 min at pH	
					7	
graphite powder,	graphite powder oxidized to	NaBH ₄ solution was	nZVI dispersed on	persulfate activation with	unknown	Chemical
FeSO ₄ ·7H ₂ O	graphene oxide by Hummers method,	dropwise added with	the surface of	92.1% of atrazine		Eng. J.
	graphene oxide and methanol/water were	vigorous stirring under	graphene	removed within 21 min.		2018,341,
	ultrasonically stirred, FeSO ₄ ·7H ₂ O added	nitrogen atmosphere.				126-136
graphite powder,	graphite powder oxidized to	NaBH ₄ dissolved in	reduced graphene	nearly complete	nearly complete	J. Hazard.
NaNO ₃ H ₂ SO ₄ ,	graphene oxide by Hummers method,	ultrapure water was	oxide supported	dechlorination of TCE	dechlorination of TCE	Mater. 2018,
KMnO ₄ , H ₂ O ₂ ,	graphene oxide and ultrapure water were	dropwise added to the	nZVI	was obtained	was obtained	349, 35-44
FeSO ₄ •7H ₂ O	sonicated for 2 h. 3 g $FeSO_4 \cdot 7H_2O$ added	flask at 20°C for 2.5 h.				
Graphite flask,	Preparation of Fe ₃ O ₄ -rGO was redispered	NaBH ₄ alkaline	nZVI immobilized	unknown	98.0% removal of 50	J. Water
FeCl ₃ ·6H ₂ O,	in oxygen free water. FeSO ₄ ·7H ₂ O	aqueous was added	on magnetic		mg/L MB achieved	Process Eng.
FeSO ₄ ·7H ₂ O and	dissolved in deionized water and then		Fe ₃ O ₄ -reduced		within 60 min at pH 3.00	2015, 5, 101-
NaBH ₄	transferred to the solution		graphene oxide			111
Expandable	$FeSO_4$ ·7H ₂ O dissolved in 200 mL	NaBH ₄ was added	Fe ⁰ /Fe ₃ O ₄ /graphene	unknown	Methyl Orange	J. Environ.
graphite,	deionized water and mixed with the fresh	dropwise and stirred for	composite		(94.78%), Methylene	Sci. 2016, 44,
FeSO ₄ ·7H ₂ O and	Fe ₃ O ₄ /graphene oxide under vigorous	60 min			Blue (91.60%) and	148-157
NaBH ₄	mechanical stirring for 60 min				Crystal Violet (89.07%)	
					were removal in 20 min	

Table s1. Comparison of the synthesis catalytic activity of different catalysts

sawdust,	sawdust was added FeCl ₃ ·6H ₂ O solution,	carbonization	nanofiber structure	20 mg/L of BPA were	unknown	Chemical
FeCl ₃ ·6H ₂ O	the mixture was rotary evaporation, and			completely removed in		Eng. J.
	the residue was dried at 80 °C overnight.			5 min		2019,359,
						572-583
rice hull,	Biochars were dissolved in FeSO ₄ ·7H ₂ O	dropwise addition of	rough and porous	99.4% TCE was	unknown	Bioresour.
FeSO ₄ ·7H ₂ O	solution, then N_2 was purged into the	250 mL NaBH ₄	surface	removed within 5 min at		Technol.
	solution for 1 h.		morphologies	рН 6.2		2015, 175,
						269-274
rice husk,	biochar was dissolved in FeSO ₄ ·7H ₂ O	NaBH ₄ was added	rough and porous	The degradation	unknown	Chemical
FeSO ₄ ·7H ₂ O	solution and stirred for 1 h. The solution	dropwise with vigorous	shape	efficiency of Nonylphenol		Eng. J.
	was degassed by purging N_2 for 1 h.	stirring at room		(20 mg/L) was 96.2%		2017, 311,
		temperature.		within 120 min		163-172
cornstalk,	biochars were soaked into FeCl ₃ ·6H ₂ O	NaBH ₄ was added	nZVI/BC	unknown	removal efficiency	Sep. Purif.
FeCl ₃ ·6H ₂ O	solution for 24 h under room temperature.	dropwise, followed by	composites		(74.04%) of SMT was	Technol.
		stirring for another			achieved at the optimal	2018, 202,
		30 min.			conditions pH 3	130-137
kenaf bar,	biochar was mixed with FeSO ₄ ·7H ₂ O to	green tea extract was	spherical particles	remove efficiencies of	unknown	Environ.
FeSO ₄ ·7H ₂ O	form a mixture of the biochar and iron	added under N ₂	were formed on the	BPA could reach 98% in		Pollut.
		atmosphere	biochar surface	60 min		2018, 239,
						698-705
rice husk,	biochar was dispersed in oxygen free	NaBH ₄ was added	ZVI was	unknown	efficiently activate	Scientific
FeSO ₄ ·7H ₂ O	ultrapure water. Then, 0.0135 mol	dropwise. The solution	homogeneously		H ₂ O ₂ to achieve TCE	Reports 2017,
	$FeSO_4$ ·7 H_2O was added at pH 5.0.	was stirred for 2 h	loaded on biochar		degradation efficiency	7, 43051
			surface		of 98.9% within 30 min	

gasification plant,	biochar was dissolved in ethanol and 20	NaBH ₄ was added	nZVI were	activation of PS for	unknown	Chemical
FeSO ₄ ·7H ₂ O	mL of 0.23 M $\rm FeSO_4{\cdot}7H_2O$ solution was	dropwise. The solution	dispersed in the	1028.02 mg/L COD could		Eng. J. 2019,
	added	was stirred for another	holes of the biochar	be removed within		359, 1215-
		20 min	tubes	120 min.		1223
Melamine,d-	Melamine, d-glucose, FeCl ₃ ·6H ₂ O and	annealed in N ₂	regular	activation of oxone® for	unknown	Appl. Catal.,
glucose,	FeCl ₂ ·4H ₂ O were dissolved in water,	atmosphere	nanospheres were	phenol degradation by		B. 2015, 172-
FeCl ₃ ·6H ₂ O,	followed by 1 h stirring. 28% ammonia		formed with a	complete removal of 20		173, 73-81.
FeCl ₂ ·4H ₂ O	solution was added dropwisely, and then		diameter around	ppm phenol within 10		
	transferred into a Teflon-lined autoclave		20–30 nm	min.		
	and treated in an oven at 180 °C for 18 h.					
sugarcane	sugarcane residue was impregnated in	pyrolyzed	Fe-impregnated	unknown	High removal efficiency	Bioresour.
residue,	FeSO ₄ ·7H ₂ O solution and mixed for 24 h,		sugarcane biochar		of 99.7% was achieved	Technol.
FeSO ₄ ·7H ₂ O	and filtered by a vacuum suction and dried				within 2 h at initial pH	2018, 249,
	at 60 °C for 24 h.				5.5 under 25 °C.	368-376
peanut shells,	5.0 g FeSO ₄ ·7H ₂ O and 1.0 g biochar	NaBH ₄ solution was	nZVI distributed on	The removal of diatrizoate	unknown	Int. J.
FeSO ₄ ·7H ₂ O	were put in 250 mL deionized water and	added dropwise and	the sticks of the	reached nearly 100% at		Environ.
	stirred	stirred vigorously	biochar	pH 3.0 and 25 °C.		Res. Public
						Health 2018,
						15, 1937.

	S _{BET}	Porosity	Pore	Pore Size	Elementa	al percen	tage (%)
			Volume				
	m²/g	%	cm ³ /g	nm	С	0	Fe
OCF-850	140.84	22.3	0.044	2.55	70.18	8.22	16.41
OCF-850 used	137.49	21.9	0.038	2.40	70.77	8.93	15.95

Table s2. Properties of the as-synthesized nZVI/biochar OCF-850 and OCF-850 used.

Table s3. The degradation of BPA under various conditions.

pН	PMS amount	Fe ²⁺ Addition	Catalyst Addition	Rate / min ⁻¹
4	40 mg	0 mg/L	0.05 g	1.299±0.024
4	40 mg	0 mg/L	0	0.131±0.022
4	40 mg	3.11 mg/L	0	0.178±0.020
7	40 mg	0 mg/L	0.05 g	0.351±0.032
7	40 mg	0 mg/L	0	0.0452±0.0013
7	40 mg	0.27 mg/L	0	$0.0598 {\pm} 0.0054$
10	40 mg	0 mg/L	0.05 g	0.316±0.029
10	40 mg	0 mg/L	0	0.0320 ± 0.0024
10	40 mg	0.053 mg/L	0	0.0383 ± 0.0022
pН	H_2O_2 amount	Fe ²⁺ Addition	Catalyst Addition	Rate / min ⁻¹
4	1 ml 3%	0 mg/L	0.05 g	1.105 ± 0.048
4	1 ml 3% 1 ml 3%	0 mg/L 0 mg/L	0.05 g 0	1.105±0.048 0.104±0.0083
4 4 4	1 ml 3% 1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L	0.05 g 0 0	1.105±0.048 0.104±0.0083 0.127±0.036
4 4 4 7	1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L 0 mg/L	0.05 g 0 0 0.05 g	1.105±0.048 0.104±0.0083 0.127±0.036 0.194±0.014
4 4 4 7 7	1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L 0 mg/L 0 mg/L	0.05 g 0 0 0.05 g 0	1.105±0.048 0.104±0.0083 0.127±0.036 0.194±0.014 0.0474±0.0055
4 4 7 7 7 7	1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L 0 mg/L 0 mg/L 0.34 mg/L	0.05 g 0 0 0.05 g 0 0	1.105±0.048 0.104±0.0083 0.127±0.036 0.194±0.014 0.0474±0.0055 0.0480±0.0014
4 4 7 7 7 10	1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L 0 mg/L 0 mg/L 0.34 mg/L 0 mg/L	0.05 g 0 0 0.05 g 0 0 0.05 g	$\begin{array}{c} 1.105 \pm 0.048 \\ \hline 0.104 \pm 0.0083 \\ \hline 0.127 \pm 0.036 \\ \hline 0.194 \pm 0.014 \\ \hline 0.0474 \pm 0.0055 \\ \hline 0.0480 \pm 0.0014 \\ \hline 0.053 \pm 0.0017 \end{array}$
4 4 7 7 7 7 10 10	1 ml 3% 1 ml 3%	0 mg/L 0 mg/L 3.42 mg/L 0 mg/L 0 mg/L 0 mg/L 0 mg/L 0 mg/L	0.05 g 0 0 0.05 g 0 0 0.05 g 0	$\begin{array}{c} 1.105 \pm 0.048 \\ \hline 0.104 \pm 0.0083 \\ \hline 0.127 \pm 0.036 \\ \hline 0.194 \pm 0.014 \\ \hline 0.0474 \pm 0.0055 \\ \hline 0.0480 \pm 0.0014 \\ \hline 0.053 \pm 0.0017 \\ \hline 0.00946 \pm 0.00043 \end{array}$

Note: all of the tests were conducted in triplicate.

Fig. s1. STEM-EDS elemental mapping of the as-synthesized 2D nZVI/biochar OCF-

850(a), (b) C, (c) Fe, and typical EELS spectra of the OCF-850 (d-f).

Fig. s2. Typical AFM images of the as-synthesized OCF-850 and the corresponding

section analyses.

Fig. s3. Photographs of fresh $FeCl_3 \cdot 6H_2O$ stark on the surface of the OCC (a) and after exposure to the air after 1 h (b).

Fig. s4. SEM images of the OCC-derived materials produced under different conditions, (a) OCC-850, (b) carbonization of FeCl₃·6H₂O loaded OCC at 850 °C and then shearing 10 min; (c) carbonization of Fe(NO₃)₃·9H₂O loaded OCC at 850 °C and then shearing 10 min; (d) carbonization of CuCl₂·2H₂O loaded OCC at 850 °C and then shearing 10 min; (e) carbonization of Fe(NO₃)₃·9H₂O and CuCl₂·2H₂O loaded OCC at 850 °C and then shearing 10 min; (e) carbonization of Fe(NO₃)₃·9H₂O and CuCl₂·2H₂O loaded OCC at 850 °C and then shearing 10 min; and (f) of shearing mixing of Fe(NO₃)₃·9H₂O and CuCl₂·2H₂O loaded OCC for 10 min and then carbonization at 850 °C.

Fig. s5. XPS spectra of the as-synthesized materials (a), the high resolution C 1s spectra of OCF-850 (b), OCF-550 (c) and OCC-850 (d).

Fig. s6. Possible degradation pathway of BPA induced by the activation of PMS

over OCF-850.

Figure s7. (a) The relative concentration profiles of BPA during typical Fenton degradation processes under dark conditions, (b) the magnetic hysteresis loop of OCF-850, and (c) the magnetic separation of the OCF-850 dispersed in a C_2H_5OH solution.

Fig. s8. The high resolution O 1s spectra of OCF-850 after typical PMS degradation process (a), Leaching of Fe ions during the degradation process (b), Cyclic degradation in repetitive degradation of BPA during typical PMS degradation processes (c), during typical Fenton degradation processes (d), the XRD spectrum of OCF-850 after 6 month (e), and the high resolution Fe2p spectra after 6 month (f).

Figure s9. Typical TEM images (a-c) and AFM image (d) of the OCF-850 after the catalysis.