Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Insight into the reaction mechanism of water, oxygen and nitrogen molecule on the tin iodine perovskite surface

Guo Xie ^a, Ling Xu ^{a, *}, Lin Sun ^a, Yan Xiong ^a, Ping Wu ^a, Bin Hu ^{a, b,*}

^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wu Han 430074, China

^bDepartment of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996,

USA

^{*}Corresponding author: Assistant Prof. Ling Xu and Prof. Bin Hu,

E-mail address:xuling@mail.hust.edu.cn; bhu@utk.edu

1. Comparing the difference of MASnI₃ and MAPbI₃

Figure S1. Band gaps and carrier's effective masses of (a) MASnI3 and (b) MAPbI3 bulk structures.

Figure S2. Band structures of MAPbI3 (a)clean (110) surface, (b)H2O adsorption on MAPbI3 (110) surface, (c)N2 adsorption on MAPbI3(110) surface, of MASnI3 (d)clean (011) surface, (e)H2O adsorption on MASnI3 (011) surface, (f) N2 adsorption on MASnI3 (011) surface.

Table S1. The band gaps of every case for clean surfaces, H2O adsorption, or N2 adsorption of MAPbI₃ and MASnI₃.

Eg/eV	MASnI3	MAPbI3
Clean surface	0.539	1.979
H2O adsorption	0.557	1.820
N2 adsorption	0.422	1.800

Figure S3. The density of states (DOS) and partial Density of states (PDOS) of MAPbI3 (110) surface (a)clean (110) surface, (b) H2O adsorption, (c) N2 adsorption, of MASnI3 (011) surface (d) clean MASnI3 (011) surface, (e) H2O adsorption, (f) N2 adsorption.

2. Calculated the interface properties with and without adsorption H₂O molecule

we calculated the interface properties with and without adsorption H_2O molecule, see the Figure S4-S6, Table S2 and Table S3. Our calculation showed that the interface of $TiO_2/MAPbI_3$ possessed a higher stability, TiO_2 layer facilitated the stability of perovskite, though TiO_2 layer is capable to protect the perovskite surface, the influence which H_2O had on the surface still existed.

Figure S4. The optimized models of (a) TiO_2 /perovskite interface, and (b) H_2O adsorption on the interface of TiO_2 /perovskite.

Table S2. The parameters of the clean $TiO_2/MAPbI_3$ interface and the adsorption case of the interface.

Case	Formula (number of atoms)	Total energy /eV	Parameter			Adsorption	Surface energy
			a b	b	с	energy/eV	or interface
							energy/(J/m^2)
r-TiO ₂ (001)	O8Ti4 (12)	-9922.71498	4.56699	4.56699	14.6576		0.08371994
MAPbI ₃ (010)	C4H24N4I12Pb4 (48)	-12496.0366	9.32209	8.44470	22.9687		0.047584469
TiO2 bulk	O4Ti2	-4961.46649	4.56699	4.56699	3.10510		
MAPbI3 bulk	C4H24N4I12Pb4	-12500.7132	8.44470	13.0242	9.32209		
H ₂ O	H2O(3)	-468.776262					
H ₂ O- MAPbI ₃ (010)	C4H26N4OI12Pb4(51)	-12965.0106	9.32209	8.44470	22.9687	-0.197738	0.455724615
TiO ₂ (001)-MAPbI ₃ (010)	C4H24N4O32Ti16I12Pb4	-52187.4219	9.22803	8.78934	31.2972		0.860850415
H ₂ O@[TiO ₂ (001)(2X2)- MAPbI ₃ (010)(1X1)]	C4H26N4O33Ti16I12Pb4(99)	-52656.6002	9.22803	8.78934	31.2972	-0.40204	0.373301857

Figure S5. The band gaps of (a) clean interface of TiO₂/MAPbI₃, and (b) H₂O adsorption on the interface of TiO₂/MAPbI₃

Figure S6. DOS and PDOS of (a) the clean interface of TiO_2 /Perovskite and (b) H₂O absorption on the TiO_2 /Perovskite interface.

Case	Bond	Population	Bond length /Å	Atom	Charge/e
Clean interface [TiO ₂ -MAPbI ₃]	19Pb3	-0.75	2 02029	19	-0.34
			2.95028	Pb3	0.76
	I12Pb4	-0.80	2.93264	I12	-0.34
				Pb4	0.77
				013	-0.64
				O23	-0.65
				Ti13	1.23
				I2	-0.12
H ₂ O adsorption on the interface	19Pb3	-0.70	2.93206	19	-0.34
				Pb3	0.75
	I12Pb4	-0.72	2.93328	I12	-0.33
				Pb4	0.76
	H25O33	0.61	0.98716	H25	0.41
				O33	-0.86
	H26O33	0.61	0.99004	H26	0.40
	Н25О23	-0.00	2.98829	O23	-0.69
	H25I2	-0.04	2.85006	I2	-0.12
	H26Ti13	-0.04	2.89082	Ti13	1.24
	013033	-0.04	2.79668	013	-0.66
	023033	-0.06	2.78685		

Table S3. The bond length, bond angle, Mulliken population and charge of these related cases.