Supporting Information

A high-voltage aqueous lithium ion capacitor with high energy density from alkaline-neutral electrolyte

Chunyang Li,^{a,b} Wenzhuo Wu,^c Shuaishuai Zhang,^b Liang He,^b Yusong Zhu, ^{*d} Jing Wang,^d Lijun Fu,^{*a,d} Yuhui Chen,^{a,d} Yuping Wu,^{*a,b,d} and Wei Huang^b

^aState Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

*E-mail: l.fu@njtech.edu.cn; wuyp@fudan.edu.cn ^bInstitute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China ^cGuanghua Cambridge International School, Fudan University, Shanghai 200433, China ^dSchool of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China *E-mail: zhuys@njtech.edu.cn

Calculation details:

The discharge specific capacitances (C_s) of single electrodes or supercapacitors were calculated from the GCD curves using the following **Equation (S1)**:¹

$$C_s = \frac{I \times t}{m \times \Delta V} \ (F \ g^{-1}) \tag{S1}$$

where *I* is the discharge current (A), *t* is the discharge time (s), C_s is the specific capacitance (F g⁻¹), ΔV is the discharge potential window including IR drop (V) and *m* is the mass or total mass of active electrode material (g).

The mass ratios of the positive and negative electrodes were balanced according to the following **Equation** (S2):²

$$\frac{m_+}{m_-} = \frac{C_-\Delta V_-}{C_+\Delta V_+} \tag{S2}$$

During the galvanostatic charge/discharge of supercapacitors, the energy density (*E*) and power density (*P*) were calculated by the following Equations (S3) and (S4):³

$$E = \frac{C_s \times \Delta V^2}{2 \times 3.6}$$
(W h kg⁻¹) (S3)

$$P = \frac{E \times 3600}{t} \, (W \, \text{kg}^{-1}) \tag{S4}$$

Fig. S1: Construction of a simple two-electrode mold.

Fig. S2: The EDS elemental mapping (a) and spectrum (b) of LiMn₂O₄ nanorods (tested by HITACHI S4800).

Fig. S3: (a) High-magnification TEM image of LiMn₂O₄ nanorods (The lattice spacing is ~0.48 nm). Scale bars: 10nm (b) N₂ absorption-desorption isotherm.

Fig. S5: The EDS elemental spectrum of NBC (tested by Phenom ProX).

 Table S1: The element contents of NBC from EDS elemental spectrum.

NBC	С	N	0
wt.%	83.00	6.45	10.55
At.%	86.06	5.73	8.21

Fig. S6: XPS spectra of NBC.

The atomic contents of C, N, and O in NBC from the XPS spectra are about 86.48%, 4.42% and 9.10%, respectively, which is close to the values from EDS elemental spectrum.

Fig. S7: (a) CV curves of NBC electrode at various scan rates in 1 M Li₂SO₄ aqueous electrolyte solution. (b) GCD profiles of NBC electrode at different current densities. (c) Specific capacitance vs. current densities. (d) Nyquist plots of NBC electrodes in 1 M Li₂SO₄ and 2 M KOH aqueous electrolyte solutions (inset is equivalent circuit model). (The mass of active material is 0.87 mg)

Fig. S8: Electrochemical performance of NBC electrode in 2 M KOH (0.3 M K_2SO_4) aqueous electrolyte: (1) CV comparison at 10 mV s⁻¹ in 2 M KOH and 2 M KOH (0.3 M K_2SO_4). (b) GCD profiles at different current densities. (c) Specific capacitance vs. current densities. (d) Nyquist plots in 2 M KOH and 2 M KOH (0.3 M K_2SO_4) (inset is equivalent circuit model). (The mass of active material is 1.09 mg)

Fig. S9: Electrochemical performance of LiMn₂O₄ electrode in 1 M Li₂SO₄ (0.3 M K₂SO₄) aqueous electrolyte: (a) CV comparison at 3 mV s⁻¹ in 1 M Li₂SO₄ and 1 M Li₂SO₄ (0.3 M K₂SO₄). (b) The first three CV curves of LiMn₂O₄ electrode at 3 mV s⁻¹ in 0.3 M K₂SO₄. (c) GCD profiles at different current densities. (c) Specific capacitance vs. current densities. (d) Fitting Nyquist plots in 1 M Li₂SO₄ and 1 M Li₂SO₄ (0.3 M K₂SO₄) (0.3 M K₂SO₄) (inset is equivalent circuit model). (The mass of active materials in 0.3 M K₂SO₄ and the mixed electrolyte are 0.8 and 1.2 mg, respectively)

In Fig. S9b, a obvious oxidation peak can be found and it gradually gets smaller with CV cycles, which should be ascribed to the Li^+ extraction from $LiMn_2O_4$ nanorods. Moreover, there are no reduction peaks in CV curves, further indicating that no K⁺ insertion exists in. The addition of K₂SO₄ only brought a little K⁺ absorption capacitance.

Fig. S10: (a) EIS result of Pt//Pt with 0.3 M K_2SO_4 aqueous electrolyte. (b) The potential difference of two electrolytes (Pt//Pt) in the alkaline-neutral system (about 0.26 V).

In Fig. S8a, a bulk resistance (the intercept of the straight line on the real axis) of 60 Ω can be obtained. According the following Equation (S5):⁴

$$\sigma = \frac{l}{A \times R_B} \left(S \ cm^{-1} \right) \tag{S5}$$

where, σ is the ionic conductivity, 1 is the thickness of the film (0.135 mm), A is the area of the electrolyte contacting with the film (0.25 cm²), R_b is the bulk resistance, the caculated K⁺ ionic conductivity is 9×10^{-4} S cm⁻¹, which can be approximated as the K⁺ ion conductivity of the K⁺ ion conductive membrane.

Fig. S11: (a) Discharge specific capacitance of the NBC//LiMn₂O₄ LIC with the alkaline-neutral electrolyte at various current densities. (b) Nyquist plots of NBC//LiMn2O4 LICs with two various electrolytes. (c) Cycling stability of the LIC (inset is optical image of one cell lighting up a red LED).

Fig. S12: a) CV curves of the NBC//LiMn₂O₄ LIC with Li₂SO₄ aqueous electrolyte solution at various scan rates. b) GCD profiles of the NBC//LiMn₂O₄ LIC at different current densities. c) Specific capacitance vs. current densities. d) Cycling performance of the NBC//LiMn₂O₄ LIC at a current density of 1 A g⁻¹. (The total mass of active materials is 3.03 mg)

References:

[1] T. Zhai, L. M. Wan, S. Sun, Q. Chen, J. Sun, Q. Y. Xia, H. Xia, *Adv. Mater.*, 2017, **29**, 1604167.

[2] Z. J. Fan, J. Yan, T. Wei, L. J. Zhi, G. Q. Ning, T. Y. Li, F. Wei, *Adv. Funct. Mater.*, 2011, **21**, 2366-2375.

[3] W. H. Zuo, C. Y. Xie, P. Xu, Y. Y. Li, J. P. Liu, Adv. Mater., 2017, 29, 1703463.

[4] J. Malathi, M. Kumaravadivel, G. Brahmanandhan, M. Hema, R. Baskaran, S. Selvase -karapandian, *J. Non. Cryst. Solids*, 2010, **356**, 2277-2281.