Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

## **Electronic Supplementary Information**

Constructing CsPbBr<sub>x</sub>I<sub>3-x</sub> nanocrystal/carbon nanotube composite with improved charge transfer and light harvesting for enhanced photoelectrochemical activity

*Mu-Zi Yang,<sup>‡</sup> Yang-Fan Xu,<sup>‡</sup> Jin-Feng Liao, Xu-Dong Wang, Hong-Yan Chen and Dai-Bin Kuang*\* MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China

## \*Email: <u>kuangdb@mail.sysu.edu.cn</u>.

*‡ These authors contribute equally to this work*.



**Fig. S1** TEM image of (a, b) the as-prepared CsPbBr<sub>3</sub> NC; (c) the CsPbBr<sub>3</sub> NC/CNT (100); (d) the CsPbBr<sub>3</sub> NC/CNT (400).



Fig. S2 The SEM images of CNTs (a) before and (b) after purification.



Fig. S3 XRD pattern of the purified CNT.



Fig. S4 The TEM images of CsPbBr<sub>x</sub>I<sub>3-x</sub> NC: (a) CsPbBr<sub>2</sub>I NC (b) CsPbBr<sub>1.5</sub>I<sub>1.5</sub> NC; (c) CsPbBrI<sub>2</sub> NC; (d) CsPbI<sub>3</sub> NC.



Fig. S5 The XRD patterns of (a)  $CsPbBr_xI_{3-x}$  NC and (b)  $CsPbBr_xI_{3-x}$  NC/CNT (200).



**Fig. S6** The TEM images of (a) CsPbBr<sub>2</sub>I NC/CNT (200); (b) CsPbBr<sub>1.5</sub>I<sub>1.5</sub> NC/CNT (200); (c) CsPbBrI<sub>2</sub> NC/CNT (200); (d) CsPbI<sub>3</sub> NC/CNT (200).



**Fig. S7** (a) Absorption spectra and steady-state PL spectra of the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC and CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT (200). (b-e) Transient-state PL spectra of the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC and CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT (200), with an excitation wavelength of 369.6 nm.



**Fig. S8** (a) The photos of the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC and the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT (200) Films (x=2, 1.5), (b-d) Color-change process of the CsPbBrI<sub>2</sub> NC film in the air within 10 s. (e) the XRD pattern of the CsPbBrI<sub>2</sub> NC/CNT (200).



Fig. S9 The cross-section SEM images of the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC and CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT (200) (x=0, 1, 1.5, 2).



**Fig. S10** EIS Nyquist plots of the CsPbBr<sub>x</sub>I<sub>3-x</sub> NC and CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT (200) (x=1, 1.5, 2) photoelectrodes. The tests are conducted under a bias of -0.4 V vs. Ag/AgCl. A 150 W Xe lamp with an AM 1.5G filter and 150 mW cm<sup>-2</sup> was used as a light source.

| Samples                         | CsPbBr <sub>x</sub> I <sub>3-x</sub> colloid | CNT        | Ethyl   |
|---------------------------------|----------------------------------------------|------------|---------|
|                                 | (in toluene)                                 | dispersion | acetate |
| CsPbBr₃ NC                      | 1000 μL                                      | 0 µL       |         |
| CsPbBr <sub>3</sub> NC/CNT(100) | 900 μL                                       | 100 µL     |         |
| CsPbBr <sub>3</sub> NC/CNT(200) | 800 μL                                       | 200 µL     | 1mL     |
| CsPbBr <sub>3</sub> NC/CNT(400) | 600 μL                                       | 400 µL     |         |

Table S1. The specific volume ratio in fabrication of CsPbBr<sub>x</sub>I<sub>3-x</sub> NC/CNT hybrids

| Samples                         | Transient-state photocurrent           | Steady state photocurrent |  |
|---------------------------------|----------------------------------------|---------------------------|--|
|                                 | density of ( $\mu$ A/cm <sup>2</sup> ) | density (µA/cm²)          |  |
| CsPbBr₃ NC                      | 48.1                                   | 39.7                      |  |
| CsPbBr <sub>3</sub> NC/CNT(100) | 128                                    | 83.2                      |  |
| CsPbBr <sub>3</sub> NC/CNT(200) | 206                                    | 127                       |  |
| CsPbBr <sub>3</sub> NC/CNT(400) | 84.8                                   | 50.5                      |  |

**Table S2.** The specific data transient and steady photocurrent density of  $CsPbBr_3 NC$  and  $CsPbBr_3 NC/CNT$  hybrids

**Table S3.** The TAS decay kinetics fitting results of  $CsPbBr_3 NC$  and  $CsPbBr_3 NC/CNT$  hybrids

| Samples                         | $	au_1$ (ns) | $	au_2$ (ps) | Standard deviation |
|---------------------------------|--------------|--------------|--------------------|
| CsPbBr₃NC                       | 11.8         | 399          | 0.00124            |
| CsPbBr <sub>3</sub> NC/CNT(100) | 10.3         | 286          | 0.00091            |
| CsPbBr <sub>3</sub> NC/CNT(200) | 6.65         | 176          | 0.00126            |
| CsPbBr <sub>3</sub> NC/CNT(400) | 5.32         | 102          | 0.00118            |

**Table S4.** The specific transient and steady photocurrent densities of  $CsPbBr_xI_{3-x} NC$  and  $CsPbBr_xI_{3-x} NC/CNT$  hybrids

| Samples                                   | Photocurrent density of                     | Photocurrent density of            |  |
|-------------------------------------------|---------------------------------------------|------------------------------------|--|
|                                           | transient state ( $\mu$ A/cm <sup>2</sup> ) | steady state (µA/cm <sup>2</sup> ) |  |
| CsPbBr <sub>2</sub> I NC                  | 88.7                                        | 58.8                               |  |
| CsPbBr <sub>2</sub> I NC/CNT(200)         | 273                                         | 186                                |  |
| CsPbBr <sub>1.5</sub> I <sub>1.5</sub> NC | 117                                         | 63.6                               |  |
| $CsPbBr_{1.5}I_{1.5}$                     | 417                                         | 236                                |  |
| NC/CNT(200)                               |                                             |                                    |  |
| CsPbBrl <sub>2</sub> NC                   | 63.5                                        | 36.2                               |  |
| CsPbBrl <sub>2</sub> NC/CNT(200)          | 177                                         | 127                                |  |

| Samples                                           | $	au_{average}$ / ns | χ     |
|---------------------------------------------------|----------------------|-------|
| CsPbBr <sub>2</sub> I                             | 58.85                | 1.102 |
| CsPbBr <sub>2</sub> I /CNT (200)                  | 44.05                | 1.128 |
| CsPbBr <sub>1.5</sub> I <sub>1.5</sub>            | 85.96                | 1.237 |
| CsPbBr <sub>1.5</sub> I <sub>1.5</sub> /CNT (200) | 62.63                | 1.077 |
| CsPbBrl <sub>2</sub>                              | 124.19               | 1.417 |
| CsPbBrl <sub>2</sub> /CNT (200)                   | 77.06                | 1.195 |
| CsPbl₃                                            | 143.25               | 1.566 |
| CsPbl <sub>3</sub> /CNT (200)                     | 118.16               | 1.482 |

Table S5. Summary of the average PL lifetimes for the CsPbBr\_xI\_3-x NC and CsPbBr\_xI\_3-  $_{\rm x}$  NC/CNT hybrids

Table S6. The EIS fitting results of  $CsPbBr_xI_{3-x}$  NC and  $CsPbBr_xI_{3-x}$  NC/CNT hybrids

| Samples                                   | Without CNT(ohm) | with 200 µL CNT(ohm) |
|-------------------------------------------|------------------|----------------------|
| CsPbBr <sub>2</sub> I NC                  | 20037            | 7820                 |
| CsPbBr <sub>1.5</sub> I <sub>1.5</sub> NC | 31119            | 6419                 |
| CsPbBrl <sub>2</sub> NC                   | 45874            | 18019                |