Supporting Information

Flower-Like MoS₂ Nanocrystals: A Powerful Sorbent of Li⁺ in Spiro-OMeTAD Layer for Highly Efficient and Stable Perovskite Solar Cells

Lu-Lu Jiang^a, Zhao-Kui Wang^{b*}, Meng Li^b, Chun-He Li^a, Peng-Fei

Fang^a*, and Liang-Sheng Liao^b*

^a Department of Physics and Hubei Nuclear Solid Physics Key Labora-tory, Wuhan University, Wuhan 430072, China

^b Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University, Suzhou 215123, China

Corresponding Authors: zkwang@suda.edu.cn (Z.K.Wang); <u>lsliao@suda.edu.cn</u> (L.S. Liao); fangpf@whu.edu.cn (P. F. Fang)

Keywords: Perovskite solar cells; Device stability; Flower-like MoS₂; Ionic igration

Figure S1. The SEM images of Spiro-OMeTAD and Spiro-OMeTAD: MoS_2 (0.6 wt%) films deposited on $CH_3NH_3PbI_3$ layer. The bottom two figures are the and the S and Mo elements mappings in Spiro-OMeTAD: MoS_2 (0.6 wt%) film.

Figure S2. ESR spectroscopy of as-prepared and aged (72 h) Spiro-OMeTAD and Spiro-OMeTAD: MoS₂ films under (a) dark and (b) lighting for min.

Figure S3. *J-V* characteristics of aged (72 h) perovskite solar cells under forward and reverse scanning directions. Inset are the calculated values of current hysteresis (HI).

Figure S4. AFM images of aged (72 h in air) (a) Spiro-OMeTAD and (b) Spiro-OMeTAD:MoS₂ (0.6 wt%) films deposited on CH₃NH₃PbI₃ layer.

Figure S5. Polarized optical microscope images of (a)-(c) Spiro-OMeTAD and (d)-(f) Spiro-OMeTAD:MoS₂ (0.6 wt%) films deposited on CH₃NH₃PbI₃ layer.

Figure S6. The cross-section SEM images of Spiro-OMeTAD and Spiro-OMeTAD :MoS₂ based devices.

Figure S7. The UPS images of Spiro-OMeTAD and Spiro-OMeTAD:MoS₂ (0.6 wt%) films and energy-level diagram of the corresponding layer.

Figure S8. The plots of time-resolved photoluminescence for glass/CH₃NH₃PbI₃/Spiro-OMeTAD and Spiro-OMeTAD:MoS₂ (0.6 wt%).

The PL decay time and amplitudes are fitted using exponential equation, where A_i is the decay amplitude, τ_i is the decay time, and K is a constant for the baseline offset.

$$f(t) = \sum_{i} A_{i} \exp\left(-\frac{t}{\tau_{i}}\right) + K$$

The average lifetime (τ_{ave}) is estimated using equation as follows.

$$\tau_{ave} = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}$$

Figure S9. (a) Absorption spectra of $CH_3NH_3PbI_3/Spiro-OMeTAD$ and $CH_3NH_3PbI_3/Spiro-OMeTAD:MoS_2$ films. (b) Energy-level diagram of the corresponding materials.