Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Direct synthesis of porous graphitic carbon sheets grafted on carbon fiber for high-performance supercapacitors

Xiaohua Zhang, Hengxiang Li, Bing Qin, Qun Wang, Xiaohan Xing, Donghua Yang, Li'e Jin, Qing Cao*

Institute of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024 P.R.China.

*E-mail address: qcao2000@163.com (Q Cao)

Content:

Fig. S1 Galvanostatic charge–discharge curves of CS@CF-KFe symmetric supercapacitor at different current densities in 6 M KOH electrolyte.

Fig. S2 Galvanostatic charge–discharge curves of CS@CF-KFe symmetric supercapacitor at different current densities in 1 M Na₂SO₄ electrolyte.

 Table S1 Comparison of electrochemical properties of CS@CF-KFe with reported various biomassderived carbon materials in the references.

Fig. S1 Galvanostatic charge–discharge curves of CS@CF-KFe symmetric supercapacitor at different current densities in 6 M KOH electrolyte.

Fig. S2 Galvanostatic charge–discharge curves of CS@CF-KFe symmetric supercapacitor at different current densities in $1 \text{ M Na}_2\text{SO}_4$ electrolyte.

Precursor	Catalyst	$S_{\rm BET}$	Ta	C^{b}	Cycling stability	Ref.
		$(m^2 g^{-1})$	(A g ⁻¹)	(F g ⁻¹)		
Cornstalk	K ₄ [Fe(CN) ₆]	540	1	213	98% after 6000	[1]
Glucose	КОН	1880	0.25	283	88.5% after	[2]
					10000	
Willow catkin	КОН	1533	0.5	298	98% after 1000	[3]
Camellia petals	$(NH_4)_2S_2O_8$	1122	0.5	275	98% after 1000	[4]
Pectin biopolymer	Mg(CH ₃ COO) ₂	1320	1	274		[5]
	·4H ₂ O					[-]
Bagasse	КОН	2296	0.5	320	92.85% after	[6]
					15000	
Nori	$ZnCl_2$	832.4	0.1	220	96.6% after 5000	[7]
Glucose	КОН	1997.5	0.5	312	91.3% after 4000	[8]
Pomelo mesocarps	CaCl ₂	974.6	0.5	245		[9]
Filter papers and	$K_3[Fe(C_2O_4)_3]$	1515.6	1	313.0	100.2% after	This
glucose	·H ₂ O				10000	work

 Table S1 Comparison of electrochemical properties of CS@CF-KFe with reported various biomass

 derived carbon materials in the references.

Note: ^a Current density; ^b Specific capacitance in KOH electrolyte using a three-electrode system.

References

- L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin and H. Fu, *ChemSusChem*, 2013, 6, 880-889.
- 2. D. Jia, X. Yu, H. Tan, X. Li, F. Han, L. Li and H. Liu, J. Mater. Chem. A, 2017, 5, 1516-1525.
- 3. Y. Li, G. Wang, T. Wei, Z. Fan and P. Yan, Nano Energy, 2016, 19, 165-175.
- 4. T. Wei, X. Wei, L. Yang, H. Xiao, Y. Gao and H. Li, J. Power Sources, 2016, 331, 373-381.
- F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan and J. Qiu, *Chem. Commun.*, 2016, 52, 6673-6676.
- H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu and M. Zheng, J. Power Sources, 2016, 302, 164-173.
- 7. C. Wang and T. Liu, J. Alloys Compd., 2017, 696, 42-50.
- 8. Y. Wang, H. Xuan, G. Lin, F. Wang, Z. Chen and X. Dong, J. Power Sources, 2016, 319, 262-270.
- 9. H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang and Z. Lei, *Electrochim. Acta*, 2016, 190, 862-871.