Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Composite K₂Mo₄O₁₃/α-MoO₃ Nanorods: Sonochemical Preparation and

Applications for Advanced Li⁺/Na⁺ Pseudocapacitance

Mingxiang Hu^{a,b}, Huijuan Jing^a, Tao Li^c, Jiahao Wang^a, Huaming Yang^d, Ruitao Lv^{b,*}, Deliang Chen^{a,c,*}

^aSchool of Materials and Science Engineering, Zhengzhou University, Zhengzhou 450001, PR China.

^b State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^c School of Materials and Science Engineering & Chemical Engineering and Energy Technology, Dongguan University

of Technology Dongguan 523808, PR China

^d Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, PR China

*Corresponding Authors: Professor Dr. Deliang Chen, E-mail: dlchen@zzu.edu.cn; Professor Dr. Ruitao Lv, E-mail: lvruitao@tsinghua.edu.cn

Figure S1. (a) X-ray diffraction (XRD) patterns of α -MoO₃/K₂Mo₄O₁₃ and α -MoO₃ (CMO) powders derived from commercial molybdic acid; (b) Mass ratios of element K and compound K₂Mo₄O₁₃ in KMO (derived from plate-liked MoO₃.) 1 / 4

Figure S2. Scanning electron microscope (SEM) images of (a) CMO (α -MoO₃ powders derived from commercial molybdic acid), and (b) KMO (α -MoO₃/K₂Mo₄O₁₃).

Figure S3. SEM images of KMO with different sonication time: (a, b) 0.5 h; (c, d) 1 h; (e, f) 3 h and (g, h) 8

h.

Figure S4. (a) Rate performance of the CMO powders as anodes in LIBs.

Figure S5. (a,b) Cycling performance of CMO in LIB at (a) 0.1 A g^{-1} and (b) 1 A g^{-1} ; (c,d) Cycling performance of CMO in SIB at (c) 0.1 A g^{-1} and (d) 1 A g^{-1} .

Figure S6. Determination of *b* values ($i=av^b$) based on the linear relation of log (*i*, peak current) versus log (*v*, scan rate): (a) KMO in LIBs at various potentials; (b-e) Comparison of CMO and KMO at (b) 0.1 V, (c) 1 V and (d) 2 V and (e) 3 V; (f) Comparison of CV curves of KMO and CMO in SIBs.

Figure S7. (a) Initial CV curves of CMO in SIB at 5 mV s⁻¹; (b) CV curve of the first cycle of KMO in SIB at 5 mV s⁻¹; (c) CV curves of KMO in SIBs under various scan rates; (d) CV curves of CMO in SIBs under various scan rates.