An aluminum(III) picket fence phthalocyanine-based heterogeneous catalyst for ring-expansion carbonylation of epoxides

Jianwei Jiang and Sungho Yoon*

Supporting Information

Fig. S1 ¹H NMR spectra of the ligand and AlPc'Cl monomer.

Fig. S2 Elemental analysis of the ligand (left) and AlPc'Cl monomer (right).

Fig. S3 TEM images of the network 2.

Operator ID: Company name: Method filename: Method name: Analysed: Printed:	LEE HK SOGANG LINC C:\Eager for FLAy NCHS 2018-05-08 12:09 2018-05-09 09:14	SH\유기반응센터\ 9 4	N C H S syster	n 170	316.mth
Sampler method:					
Sample ID:	JJ3 (# 52)				
Analysis type:	UnkNown				
Chromatogram filename:	Q051.dat				
Calibration method:	K Factors				
Sample weight:	1.343				
Protein factor:	6.25				
Element Name		Ret.Time	Area	BC	Area ratio
Nitrogen	5 3248	48	161400	RS	27 257450
Carbon	67.7286	74	4399339	RS	1.000000
Hydrogen Totals	5.3120 78.3654	215	1033964 5594703	RS	4.254828

.202058E+07 .480874E+07 .144163E+08 48 74 215 161400 RS 4399339 RS 1033964 RS 5594703 5.3248 67.7286 5.3120 78.3654

K factor

Fig. S4 Elemental analysis of the network 2.

Fig. S5. ¹H NMR (a) and ¹³C NMR (b) spectra of monomer **1**. The solid-state ¹³C NMR of network **2** (c).

Fig. S6 XRD pattern of the network 2.

the atomic ratio of Al/N: $\frac{0.61}{5.79} = 0.1053$

Theoretically, the ratio of Al/N: 1/8 = 0.125

Therefore, the proportion of AI metalated Pc' ring in the networs:

$$\frac{0.1053}{0.125} \times 100\% = 84.2\%$$

Fig. S7 SEM and EDX of the network 2.

Fig. S8 SEM images of the network 2 (a, b) and catalyst 3 (c, d).

Fig. S9 Al $(2p_{3/2})$ electron binding energy of the network 2 and catalyst 3.

Element	Wt%	Atom %
С	79.81	84.86
Ν	6.55	5.97
0	9.96	7.95
Al	1.18	0.56
Cl	0.55	0.20
К	0.40	0.13
Со	1.56	0.34
Total:	100.0	100.0

Fig. S10 SEM and EDX of catalyst 3.

Fig. S11 BJH pore-size distribution for the network 2 and catalyst 3.

Fig. S12-1 ¹H NMR spectrum of the product from PO carbonylation in DME solvent using AlPc'-based heterogeneous catalyst **3**, 40 bar CO, 23 °C, 1 h (Table 1, entry 1).

Fig. S12-2 ¹H NMR spectrum of the product from PO carbonylation using an *in situ* generated catalyst from AlPcCl and Co₂(CO)₈). (4 mol% AlPcCl, 6 mol% Co₂(CO)₈, 0.5 M PO in THF, 40 bar CO, 23 °C, 1 h).

Fig. S13 ¹H NMR spectrum of the product from PO carbonylation in DME solvent using catalyst **3**, 10 bar CO, 23 °C, 1 h (Table 1, entry 2).

Fig. S14 ¹H NMR spectrum of the product from allyl glycidyl ether carbonylation (Table 1, entry 3).

Fig. S15 ¹H NMR spectrum of the product from benzyl glycidyl ether carbonylation (Table 1, entry 4).

Fig. S16 ¹H NMR spectrum of the product from epichlorohydrin carbonylation (Table 1, entry 5).

Fig. S17 ¹H NMR spectrum of the product from oxetane carbonylation in DME (Table 1, entry 6).

Fig. S18 ¹H NMR spectrum of the product from oxetane carbonylation in THF (Table 1-6).

Fig. S19 ¹H NMR spectrum of the product from oxetane carbonylation using the network 2 or $KCo(CO)_4$ alone.

Fig. S20 ¹H NMR spectrum of the product from oxetane carbonylation using an equimolar mixture of the network 2 and $KCo(CO)_4$.

Fig. S21 ¹H NMR spectrum of the product from filteration test.

Fig. S22 SEM images of catalyst 3 before (a, b) and after (c, d) 3 catalytic cycles.

Fig. S23 The BET surface areas (a) of catalyst before and after three catalytic cycles, with corresponding BJH pore-size distributions (b).