Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

In-situ catalytic formation of graphene-like graphitic layer

decoration on Na₃V_{2-x}Ga_x(PO₄)₃ ($0 \le x \le 0.6$) for ultrafast and high

energy sodium storage

Qiao Hu, Jia-Ying Liao, Xiao-Dong He, Shuo Wang, Li-Na Xiao, Xiang Ding, Chun-

Hua Chen*

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials

Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science

and Technology, University of Science and Technology of China, Anhui Hefei 230026,

China

Corresponding authors: E-mail: <u>cchchen@ustc.edu.cn</u>; Phone: +86-551-63606971; Fax: (+86)551-63601592.

Fig. S1 Typical SEM image of $Na_3V_2(PO_4)_3$ and corresponding elemental mapping of sodium (yellow), vanadium (blue), gallium (cyan), phosphorous (plum), oxygen (red), and carbon (green) (i).

Fig. S2 The initial charge-discharge curves in the voltage range of 2.3-4.3 V for $Na_3V_{2-x}Ga_x(PO_4)_3$ (x= 0, 0.1, 0.2, 0.4 and 0.6) at 0.1 C.

Fig. S3 Ex-situ XPS of $Na_3V_{1.6}Ga_{0.4}(PO_4)_3$ at different charge states. Table S1 ICP-AES results of $Na_3V_2(PO_4)_3$ and $Na_3V_{1.6}Ga_{0.4}(PO_4)_3$ samples.

Samples	Na	V	Ga	Р
$Na_3V_2(PO_4)_3$	3.02	2.0	0	3.0
Na ₃ V _{1.6} Ga _{0.4} (PO ₄) ₃	3.02	1.6	0.42	3.06

Fig. S4 The rate performances of $Na_3V_{1.6}Ga_{0.4}(PO_4)_3$ with higher mass loadings in the voltage of 2.3-4.3 V (a). The charge-discharge curves of $Na_3V_{1.6}Ga_{0.4}(PO_4)_3$ at different current rates (b, c). The comparison of power density (d) with higher mass loadings (4.2 and 6.1 mg cm⁻²) at different current rates.