Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

1	Supporting Information					
2	Hierarchical N/S co-doped carbon anodes fabricated through facile					
3	ionothermal polymerization for high-performance sodium ion batteries					
4	Wenlong Shao, ^a Fangyuan Hu, ^{b,*} Ce Song, ^c Jinyan Wang, ^a Cheng Liu, ^a Zhihuan Weng, ^a					
5	Xigao Jian ^{a,b,c,*}					
6						
7	^a State Key Laboratory of Fine Chemicals, Liaoning Province Engineering Research Centre og					
8	High Performance Resins. Dalian University of Technology, Dalian, 116024, China. *E-mail:					
9	hufangyuan@dlut.edu.cn					
10	^b School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Liaoning					
11	Province Engineering Centre of High Performance Resins. Dalian University of Technology,					
12	Dalian 116024, China.					
13	^c School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.					
14						
15	Table of content					
16	1. Experimental section.					
17	2. FT-IR spectra and TGA curves of the precursors.					
18	3. SEM, TEM of the products.					
19	4. FT-IR, XRD, Raman curves of the products.					
20	5. Electrochemical performance of the products.					

1. Experimental section. 1

3 Synthesis of monomers and polymers:

Compound PHPZ-CN and 2,5-bis(tributylstannyl)thiophene were synthesized 4 according to the literature.^[1-2] 5

4,4'-((thiophene-2,5-diylbis(4,1-phenylene))bis(1-oxophthalazine-4,2(1H)-6 7 diyl))dibenzonitrile (STPN). To a mixture of PHPZ-CN (3.538 g, 8.8 mmol) and 2,5bis(tributylstannyl)thiophene (2.646 g, 4.0 mmol) in N-methyl-2-pyrrolidone (NMP) 8 30 mL, PdCl₂(PPh₃)₂ (0.124 g, 0.18 mmol) was added under a N₂ atmosphere. The 9 mixture was stirred for 42 h under 110 °C. The resulting mixture was poured into 10 water, then a greyish-green precipitate was filtered. The resulting solid was washed 11 12 with hot NMP, N,N-dimethyl acetamide (DMAc), ethanol and water, and subjected to Soxhlet extraction successively with tetrahydrofuran and ethanol, then dried under 13 vacuum. 1.30 g of faint yellow product was obtained (yield: 44.83%). Calcd for 14 C₄₆H₂₆N₆O₂S: 726.1838, ToF MS EI⁺ found 726.1804. Anal. Calcd for C₄₆H₂₆N₆O₂S: C, 15 16 76.02; H, 3.61; N, 11.56; S, 4.41. Found: C, 75.84; H, 3.44; N, 11.41; S, 4.77.

17 18

2

THPZ-CN

TTPN

Compound THPZ-CN was synthesized according to the literature.^[1] 2 3 4,4'-([2,2':5',2"-terthiophene]-5,5"-diylbis(1-oxophthalazine-4,2(1H)-diyl)) dibenzonitrile (TTPN). To a mixture of THPZ-CN (3.590 g, 8.8 mmol) and 2,5-4 5 bis(tributylstannyl)thiophene (2.646 g, 4.0 mmol) in N-methyl-2-pyrrolidone (NMP) 30 6 mL, PdCl₂(PPh₃)₂ (0.124 g, 0.18 mmol) was added under a N₂ atmosphere. The mixture 7 was stirred for 42 h under 110 °C. The resulting mixture was poured into water, then a salmon precipitate was filtered. The resulting solid was washed with hot NMP, N, N-8 dimethyl acetamide (DMAc), ethanol and water, and subjected to Soxhlet extraction 9 successively with tetrahydrofuran and ethanol, then dried under vacuum. 2.15 g of red 10 11 product was obtained (yield: 72.83%). Calcd for C₄₂H₂₂N₆O₂S₃: 738.0966, ToF MS EI⁺ 12 found 738.0968. Anal. Calcd for C₄₂H₂₂N₆O₂S₃: C, 68.28; H, 3.00; N, 11.37; S, 13.02. Found: C, 62.81; H, 2.82; N, 9.79; S,12.72. 13

1

Figure S2. ¹H-NMR spectrum of TTPN (in DMSO-d⁶).

2. FT-IR spectra and TGA curves of the precursors.

2

Figure S3. FT-IR spectra of PHPZ-CN, THPZ-CN, STPN, and TTPN.

- All the precursors showed the characteristic absorption peak in 2230 cm⁻¹, indicating
 that -CN existed in all the precursors. Characteristic absorption peak in ~800 cm⁻¹
 representing the C-S-C bond in thiophene, indicating that the PHPZ-CN transferred into
 STPN successfully.
- 9 10

3. SEM, TEM of the products.

Figure S5. The SEM images of pSTPN@600, pSTPN@700, and pSTPN@800.

pTTPN@600 pTTPN@700 pTTPN@800

Figure S6. The SEM images of pTTPN@600, pTTPN@700, and pTTPN@800.

- **Figure S7**. The TEM images of pTTPN@600, pTTPN@700, pTTPN@800, pSTPN@600, pSTPN@700, and pSTPN@800.

1 4. FT-IR, XRD, and Raman curves of the products.

2

Figure S8. FT-IR spectra of pSTPN@600, pSTPN@700, pSTPN@800, pTTPN@600,
 pTTPN@700, and pTTPN@800.

5

Figure S8 showed that characteristic absorption peak of –CN in 2230 cm⁻¹ disappeared,
 and characteristic absorption peak representing the triazine ring appeared after
 ionothermal reaction, indicating the formation of porous polymer-derived carbon.

1

Figure S9. a) X-ray photoelectron spectra (XPS) of pSTPN@600, pSTPN@700, and pSTPN@800. b) High-resolution N 1s XPS spectra of pSTPN@600, pSTPN@700, and

4 pSTPN@800.

Figure S10. XRD patterns of pSTPN@600, pSTPN@700, and pSTPN@800.

Figure S12. N₂ adsorption-desorption isothermal curves of pSTPN@600, pSTPN@700,
 and pSTPN@800.

Figure S13. Pore size distribution of pSTPN@600, pSTPN@700, and pSTPN@800 6 calculated by DFT method.

Figure S14. N₂ adsorption-desorption isothermal curves (a) and corresponding pore size distribution (b) of pTTPN@400+600 and pTTPN@600. 6

5. Electrochemical performance of the products.

2

Figure S15. a) Cycling performance of pTTPN@600, pTTPN@700, and pTTPN@800 electrodes at the current density of 5 A g⁻¹. b,c) Cycling performance of pSTPN@600, pSTPN@700, and pSTPN@800 electrodes at the current density of 1 A g⁻¹ and 5 A g⁻¹. d) Rate performance of pSTPN@600, pSTPN@700, and pSTPN@800 electrodes at the current densities of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 A g⁻¹. e) Long cycle performance of pSTPN@600, pSTPN@700, and pSTPN@800 electrodes at the current density of 10 A g⁻¹.

Figure S16. (a) Cycling performance of pTTPN@400+600 and pTTPN@600 at the current density of 1 A g⁻¹. (b) Rate performance of pTTPN@400+600 and pTTPN@600 electrodes at the current densities of 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 A g⁻¹. (c) Long cycle performance of pTTPN@400+600 and pTTPN@600 electrodes at the current density of 10 A g⁻¹.

8

2 Figure S17. a) Nyquist plots for pTTPN@600 electrode after different cycle numbers. 3 b) Partial enlargement of the Nyquist plots.

- 4 5 6 Figure S18. Equivalent circuits used for fitting the EIS plots a) Before test, b) After
- different cycle numbers.

Figure S19. Separation of storage contributions of pTTPN@600 electrode from the

capacitance and diffusion-controlled process at various scan rates: a) $0.1 \text{mV} \text{ s}^{-1}$, b) $0.3 \text{mV} \text{ s}^{-1}$, c) $0.5 \text{mV} \text{ s}^{-1}$, d) $0.7 \text{mV} \text{ s}^{-1}$, and e) $0.9 \text{mV} \text{ s}^{-1}$.

Table S1. Impedance parameters of pTTPN@600 electrode after different cycling 2

numbers.

_

pTTPN@600	Re ^a (Ω)	R _{SEI} ^b (Ω)	R _{ct} ^c (Ω)
prior to cycling	8.58		11.06
after 100 cycles	8.71	10.90	8.61
after 200 cycles	8.85	17.71	15.47
after 500 cycles	8.98	44.40	41.38
after 1000 cycles	15.17	53.49	49.96
after 2000 cycles	16.66	108.8	70.30

^a R_e: electrolyte resistance.

5

^b R_{SEI}: SEI layer resistance. ^c R_{ct}: changer-transfer resistance.

Table S2. Impedance parameters of the pSTPN@600, pSTPN@700, pSTPN@800,pTTPN@600, pTTPN@700, and pTTPN@800 electrodes.

Sample	$R_e^a(\Omega)$	R _{ct} ^b (Ω)	Sample	$R_e^a(\Omega)$	$R_{ct} {}^{b}(\Omega)$
pTTPN@600	8.584	11.06	pSTPN@600	9.211	13.60
pTTPN@700	10.69	16.78	pSTPN@700	10.73	149.40
pTTPN@800	8.616	197.70	pSTPN@800	10.97	385.70

^a R_e: electrolyte resistance. ^b R_{ct}: changer-transfer resistance.

Anode	precursor	Rate capability	cyclability	Reference
N-doped carbon sheet	soybean	200 mA h g ⁻¹ @ 0.3C 150 mA h g ⁻¹ @ 1.5C 80 mA h g ⁻¹ @ 4.5C 32.3 mA h g ⁻¹ @ 30C (1C=375 mA g ⁻¹)	50 mA h g ⁻¹ @ 4.5C after 2000 cycles	[3]
Hard carbon microtubes	cotton	310 mA h g ⁻¹ @ 0.1C 275 mA h g ⁻¹ @ 0.5C 190 mA h g ⁻¹ @ 1.0C 80 mA h g ⁻¹ @ 2.0C (1C=300 mA g ⁻¹)	305 mA h g ⁻¹ @ 0.1C after 100 cycles	[4]
Hard carbon	Apple	222 mA h g ⁻¹ @ 0.2C 181 mA h g ⁻¹ @ 1C 112 mA h g ⁻¹ @ 5C 86 mA h g ⁻¹ @ 10C (1C=200 mA g ⁻¹)	85 mA h g⁻¹ @ 5C after 1000 cycles	[5]
S-doped carbon	PEDOT	327.8 mA h g ⁻¹ @ 0.5A g ⁻¹ 242.0 mA h g ⁻¹ @ 1.0A g ⁻¹ 192.5 mA h g ⁻¹ @ 2.0A g ⁻¹ 119.5 mA h g ⁻¹ @ 5.0A g ⁻¹	302 mA h g ⁻¹ @ 0.5A g ⁻¹ after 700cycles	[6]
Graphene- coupled porous carbon	Graphene, CTF	155 mA h g ⁻¹ @ 0.1A g ⁻¹ 150 mA h g ⁻¹ @ 0.5A g ⁻¹ 140 mA h g ⁻¹ @ 1.0A g ⁻¹ 133 mA h g ⁻¹ @ 5.0A g ⁻¹	137 mA h g ⁻¹ @ 1.0A g ⁻¹ after 500cycles	[7]
Mesoporous soft carbon	Mesophase pitch	260 mA h g ⁻¹ @ 0.05A g ⁻¹ 193 mA h g ⁻¹ @ 0.1A g ⁻¹ 105 mA h g ⁻¹ @ 1.0A g ⁻¹ 62 mA h g ⁻¹ @ 5.0A g ⁻¹	103 mA h g ⁻¹ @ 0.5A g ⁻¹ after 3000cycles	[8]
Porous carbon	Carbon black	196 mA h g ⁻¹ @ 0.1A g ⁻¹ 159 mA h g ⁻¹ @ 0.4A g ⁻¹ 133 mA h g ⁻¹ @ 1.6A g ⁻¹ 120 mA h g ⁻¹ @ 3.2A g ⁻¹	72 mA h g ⁻¹ @ 3.2 A g ⁻¹ after 2000cycles	[9]
Hard carbon	loofah	300 mA h g ⁻¹ @ 0.5C 260 mA h g ⁻¹ @ 1.0 C 217 mA h g ⁻¹ @ 3.0C 60 mA h g ⁻¹ @ 20C (1C=300 mA g ⁻¹)	74 mA h g ⁻¹ @ 2.1 A g ⁻¹ after 2000cycles	[10]
2D N-doped carbon nanosheets	Zn-HMT MOF	294 mA h g ⁻¹ @ 0.2A g ⁻¹ 274 mA h g ⁻¹ @ 0.5A g ⁻¹ 245 mA h g ⁻¹ @ 1.0A g ⁻¹ 215 mA h g ⁻¹ @ 5.0A g ⁻¹	170 mA h g⁻¹ @ 5.0 A g⁻¹ after 1000cycles	[11]

 Table S3 Comparison of electrochemical performances between pTTPN@600 and

 carbon-based anode materials reported previously.

Hiorarchical				
hierarchical N- doped porous carbon	Water hyacinths	248 mA h g ⁻¹ @ 0.05A g ⁻¹ 217 mA h g ⁻¹ @ 0.1A g ⁻¹ 141 mA h g ⁻¹ @ 0.8A g ⁻¹ 120 mA h g ⁻¹ @ 1.6A g ⁻¹	140 mA h g ⁻¹ @ 0.4A g ⁻¹ after 1000cycles	[16]
3D macroporous structure	GO/NCL	247 mA h g ⁻¹ @ 0.5A g ⁻¹ 219 mA h g ⁻¹ @ 1.0A g ⁻¹ 90 mA h g ⁻¹ @ 10.0A g ⁻¹	257 mA h g ⁻¹ @ 0.5A g ⁻¹ after 2500cycles	[15]
CQDs transformed 3DCFs	NaOH/ ethanol	208 mA h g ⁻¹ @ 0.1A g ⁻¹ 127 mA h g ⁻¹ @ 1.0A g ⁻¹ 93 mA h g ⁻¹ @ 5.0A g ⁻¹	87 mA h g ⁻¹ @ 10.0A g ⁻¹ after 6500cycles	[14]
3D Framework Carbon	Sodium Citrate	400 mA h g ⁻¹ @ 0.1A g ⁻¹ 278 mA h g ⁻¹ @ 0.5A g ⁻¹ 200 mA h g ⁻¹ @ 1.0A g ⁻¹ 105 mA h g ⁻¹ @ 5.0A g ⁻¹	99 mA h g ⁻¹ @ 10 A g ⁻¹ after 10000cycles	[13]
Shell-like N,S co-doped thin carbon	MoF/PVP	372mA h g ⁻¹ @ 0.5A g ⁻¹ 316 mA h g ⁻¹ @ 1.0A g ⁻¹ 239 mA h g ⁻¹ @ 8.0A g ⁻¹ 169 mA h g ⁻¹ @ 32A g ⁻¹	2000 mA h g ⁻¹ @ 16 A g ⁻¹ after 4500cycles	[12]

- 1 References:
- 2 [1] K. Yuan, C. Liu, J. Han, G. Yu, J. Wang, H. Duan, Z. Wang, X. Jian, *RSC Adv.*, 2016, **6**, 12009-12020.
- 3 [2] J. Han, K. Yuan, C. Liu, J. Wang, X. Jian, *RSC Adv.*, 2015, **5**, 30445-30455.
- 4 [3] T. Yang, T. Qian, M. Wang, X. Shen, N. Xu, Z. Sun, C. Yan, *Adv. Mater.* 2016, **28**, 539-545.
- 5 [4] Y. Li, Y.S. Hu, M.M. Titirici, L. Chen, X. Huang, *Adv. Energy Mater.*, 2016, 6, 1600659.
- 6 [5] L. Wu, D. Buchholz, C. Vaalma, G. A. Giffin, S. Passerini, *ChemElectroChem*, 2016, **3**, 292-298.
- 7 [6] L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, Y. Huang, *Adv Sci*, 2015, **2**, 1500195.
- 8 [7] J. Zhu, X. Zhuang, J. Yang, X. Feng, S.i. Hirano, J. Mater. Chem. A, 2017, 5, 16732-16739.
- 9 [8] B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, H. Song, J. Mater. Chem. A, 2016, 4, 6472-6478.
- 10 [9] W. Xiao, Q. Sun, J. Liu, B. Xiao, P.A. Glans, J. Li, R. Li, J. Guo, W. Yang, T.K. Sham, X. Sun, Nano Res.,
- 11 2017, **10**, 4378-4387.
- 12 [10] Y.-E. Zhu, L. Yang, X. Zhou, F. Li, J. Wei, Z. Zhou, J. Mater. Chem. A, 2017, 5, 9528-9532.
- 13 [11] S. Liu, J. Zhou, H. Song, *Adv. Energy Mater.*, 2018, **8**, 1800569.
- 14 [12] A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. Zhu, Z. Liang, W. Meng, W. Aftab, W. Guo, H. Zhang, M.
- 15 Yousaf, S. Gao, R. Zou, Y. Zhao, *Adv. Mater.*, 2019, **31**, 1805430.
- 16 [13] B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi, X. Yan, *Adv. Energy Mater.*, 2018, **8**, 1702409.
- 17 [14] P. Wang, B. Yang, G. Zhang, L. Zhang, H. Jiao, J. Chen, X. Yan, *Chem. Eng. J.*, 2018, **353**, 453-459.
- 18 [15] B. Chang, J. Chen, M. Zhou, X. Zhang, W. Wei, B. Dai, S. Han, Y. Huang, Chem Asian J., 2018, 13,
- 19 3859-3864.
- 20 [16] G. Zeng, B. Zhou, L. Yi, H. Li, X. Hu, Y. Li. *Sustainable Energy Fuels*. 2018, **2**, 855-861.