## **Supporting information**

## P2-type Na<sub>2/3</sub>Ni<sub>1/3</sub>Mn<sub>2/3</sub>O<sub>2</sub> as cathode materials with high-rate and long-life

## for sodium ion storage

Qiannan Liu,<sup>1,2</sup> Zhe Hu,<sup>2</sup> Mingzhe Chen,<sup>2</sup> Chao Zou,<sup>\*,1</sup> Huile Jin,<sup>1</sup> Shun Wang,<sup>1</sup> Qinfen Gu,<sup>3</sup> and Shulei Chou,<sup>\*,2</sup>

<sup>1</sup> College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, China

<sup>2</sup> Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia

<sup>3</sup> Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia

| Tuble 51. Values of structure parameters obtained from ARD fermement of Transformer. |    |     |         |         |         |            |      |
|--------------------------------------------------------------------------------------|----|-----|---------|---------|---------|------------|------|
|                                                                                      |    |     | Х       | У       | Ζ       | Occupation | Site |
| 1                                                                                    | Na | Na2 | 0.66667 | 0.33333 | 0.25000 | 0.340      | 2d   |
| 2                                                                                    | Na | Na1 | 0.00000 | 0.00000 | 0.25000 | 0.322      | 2b   |
| 3                                                                                    | Mn | Mn1 | 0.00000 | 0.00000 | 0.00000 | 0.665      | 2a   |
| 4                                                                                    | 0  | 01  | 0.66667 | 0.33333 | 0.08388 | 0.980      | 4f   |

0.00000

0.00000

0.361

2a

0.00000

Table S1. Values of structure parameters obtained from XRD refinement of NNMO.



Figure S1. XRD patterns of NNMO prepared at different temperatures.



Figure S2. SEM morphologies of NNMO powders calcined at different temperatures: (a, b)

800; (c, d) 850; and (e, f) 900°C.

Ni

Ni1

5



**Figure S3**. (a) TEM image and (b) high resolution TEM image showing lattice fringes of NNMO prepared at 850°C (inset: SADE pattern).



**Figure S4**. (a) Cycling performance and (b) corresponding CE of prepared NNMO with different cut-off voltages at 1 C.

**Table S2.** Comparison among electrochemical performances of selected reported P2-typeNa2/3Ni1/3Mn2/3O2 materials.

| Ref. | Electrolyte                 | Voltage<br>range (V) | Discharge capacity (mAh<br>g <sup>-1</sup> )/current density (mA<br>g <sup>-1</sup> )/cycle number | Rate capacity (mAh g <sup>-1</sup> )/current density<br>(mA g <sup>-1</sup> ) |
|------|-----------------------------|----------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| [S1] | 1 M NaPF <sub>6</sub> in    | 4.5-2.0              | 104.5/10/30 <sup>th</sup>                                                                          | -                                                                             |
|      | EC:DEC (3:7, v/v)           |                      |                                                                                                    |                                                                               |
| [S2] | 1 M NaClO <sub>4</sub> in   | 4.0-2.0              | 80/17/200 <sup>th</sup>                                                                            | 81/173                                                                        |
|      | PC:FEC (95:5, v/v)          |                      |                                                                                                    |                                                                               |
| [S3] | 1 M NaClO <sub>4</sub> in   | 3.75-1.5             | 123.5/17/50 <sup>th</sup>                                                                          | 98.9/173                                                                      |
|      | PC:FEC (98:2, v/v)          |                      |                                                                                                    |                                                                               |
| [S4] | 1 M NaPF <sub>6</sub> in PC | 4.5-2.0              | $134/13/50^{th}$                                                                                   | ~125/260                                                                      |
| [S5] | 1 M NaPF <sub>6</sub> in PC | 4.5-2.3              | 52/8.6/100 <sup>th</sup>                                                                           | 78.5/86.5                                                                     |

| Our work | 1 M NaClO <sub>4</sub> in | 4.0-2.0 | 89/17/100 <sup>th</sup> | 60.7/1730 |  |
|----------|---------------------------|---------|-------------------------|-----------|--|
|          | EC:DEC:FEC                |         |                         |           |  |
|          | (48.5:48.5:3, v/v/v)      |         |                         |           |  |



**Figure S5**. *In-suit* synchrotron XRD patterns of NNMO cycling between 4.0 and 1.5 V, the  $2\theta$  has been converted based on the Cu wavelength for convenience.



Figure S6. (a) Nyquist plots of prepared NNMO at 850°C before and after 700 cycles at 1 C (inset: equivalent circuit); and (b) corresponding  $Z_{re}$  vs.  $\omega^{-1/2}$  plots in the low frequency region.

**Table S3**. Values of fitted parameters obtained from EIS.

|                         | $R_{s}\left(\Omega ight)$ | $R_{f}\left(\Omega\right)$ | $R_{ct}\left(\Omega ight)$ | $D_{Na^+} (cm^2 s^{-1})$ |
|-------------------------|---------------------------|----------------------------|----------------------------|--------------------------|
| Before cycle            | 53.32                     | 882.9                      | 1161                       | 9.02×10 <sup>-12</sup>   |
| After 700 cycles at 1 C | 52.99                     | 41.44                      | 178.5                      | 7.15×10 <sup>-12</sup>   |

Figure S6a shows the EIS Nyquist plots of prepared NNMO before and after 700 cycles at 1 C between 4.0-2.0 V with the equivalent circuit inset at the open circuit potential (OCP). The Nyquist plot consists of two semicircles at high frequency area corresponding to the film resistance ( $R_f$ ) and charge transfer resistance ( $R_{ct}$ ), respectively. The inclined line at low frequency region is related to the Warburg impedance ( $Z_w$ ) associated with Na<sup>+</sup> diffusion. The values of different parameters obtained from EIS plots are shown in Table S3. The value of  $R_f$  and  $R_{ct}$  both decreased after 700 cycles at 1 C, resulting from the enhanced contact between the electrolyte and cathode material and the stabilized layers of cathode material. The low  $R_{ct}$  at the electrolyte interface is favourable for the transfer of Na<sup>+</sup> ions and electrons at the surface and the diffusion of liquid electrolyte. The apparent Na<sup>+</sup> diffusion coefficient ( $D_{Na+}$ ) can be calculated by the  $Z_{re}$  vs.  $\omega^{-1/2}$  plots in the low frequency region (Fig. S6b). The  $D_{Na+}$  calculated for electrode before and after 700 cycles at 1 C at OCP are  $9.02 \times 10^{-12}$  and  $7.15 \times 10^{-12}$  cm<sup>2</sup> s<sup>-1</sup>, respectively.



**Figure S7**. Electrodes before (a, b) and after (c, d) 1000 cycles at 1 C with super P and PVDF binder around.

## References

- S1. W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto, H. Noguchi, *Mater. Lett.*, 2014, 135, 131-134.
- S2. S. Y. Lee, J. H. Kim, Y. C. Kang, *Electrochim. Acta*, 2017, 225, 86-92.
- S3. Y. Wen, B. Wang, G. Zeng, K. Nogita, D. Ye, L. Wang, *Chem. Asian J.*, 2015, 10, 661-666.
- S4. Y. Yoda, K. Kubota, H. Isozumi, T. Horiba, S. Komaba, ACS Appl. Mater. Interfaces, 2018, 10, 10986–10997.
- S5. J. Alvarado, C. Ma, S. Wang, K. Nguyen, M. Kodur, Y. S. Meng, ACS Appl. Mater. Interfaces, 2017, 9, 26518–26530.