Supporting Information

Bismuth Nanospheres Embedding in Three-Dimensional (3D) Porous Graphene Frameworks as Highly Performance Anodes for Sodiumand Potassium-Ion Batteries

Xiaolong Cheng,¹ Dongjun Li,¹ Ying Wu,¹ Rui Xu¹ and Prof. Dr. Yan Yu^{*,1,2,3}

¹Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China. *E-mail: yanyumse@ustc.edu.cn ²State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.

³Dalian National Laboratory for Clean Energy (DNL), Chinese Academy of Sciences (CAS), Dalian 116023, China

Figure S1. XRD parttern of Bi/C.

Figure S2. N₂ sorption/desorption isotherm and pore size distribution curves of 3DGFs (a) and Bi@3DGFs (b).

Figure S3. SEM image of Polystyrene.

Figure S4. SEM images of Bi/C: (a, b) The surface in contact with the quartz tube; (c, d) The surface opposite the quartz tube.

Figure S5. CV curves of 3DGFs anode at 0.1 mV s^{-1} within 0.1-1.8 V.

Figure S6. CV curves of Bi/C anode at 0.1 mV s^{-1} within 0.1–1.8 V.

Figure S7. Galvanostatic charge–discharge profiles of 3DGFs anode at 0.1 A g^{-1} within a voltage limit of 0.1–1.8 V.

 Table S1.
 A summary for rate performance of Bi@3DGFs anode for NIBs.

Current Density (A g ⁻¹)	Capacity (mAh g ⁻¹)	Columbic Efficiency (%)	Capacity Retention (%)	
0.1	230	<i>99.2%</i>	100	
0.2	225	<i>99.5%</i>	97.8	
0.5	220	99.6%	95.7	
1	216	99. 8%	93.9	
2	213	99.9 %	92.6	
5	208	100%	90.4	
10	202	100%	87.8	
20	194	100%	84.3	
50	180	100%	78.3	

Figure S8. Rate performance of Bi/C.

Figure S9. Cycling performance of Bi@3DGFs, 3DGFs and Bi/C at 1 A g^{-1} .

Figure S10. SEM images of Bi@3DGFs electrode after 10 cycles at 0.1 A g^{-1} .

Figure S11. SEM images of Bi/C electrode after 3 cycles at 0.1 A g^{-1} .

Figure S12. CV curve at different sweep rates $(0.1-10 \text{ mV s}^{-1})$ of the 3DGFs and Bi/C anode for NIBs.

Figure S13. Nyquist plots (a) and equivalent circuit (b) of the Bi@3DGFs electrodes.

Note: R_s is the contact resistance. R_{ct} is charge-transfer resistance. *CPE* is constant phase element (space double-layer capacitance). Z_w is Warburg impedance.

 Table S2.
 Impedance parameters calculated with cycling for Bi@3DGFs.

	$R_s(\Omega)$.	CPE		R., (Q)	Z_w		
		CPE-T	CPE-P	1(2)	W-R	W-T	W-P
Fresh	3.1	1.3407E-5 0.	0 72526	31.1	3.2511E-	1.528E-	0.35085
			0.72520		5	11	

3 cycles	4.966	2.2317E-5	0.77508	5.599	14.88	0.1057	0.40111
10 cycles	4.833	2.0937E-5	0.78758	5.478	16.43	0.13166	0.39658
20 cycles	4.935	1.9715E-5	0.7907 1	5.5	17.58	0.14098	0.39548