Supporting Information

Hierarchical Spheres Constructed by ultrathin VS₂ Nanosheets for Sodium-Ion Batteries

Jianbiao Wang,^{ab} Ningjing Luo,^c Junxiu Wu,^{ab} Shuping Huang,^{c*} Ling Yu,^{ab} Mingdeng Wei^{ab*}

^a State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China.

^b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China.

^c Colleage of Chemistry, Fuzhou University, Fuzhou, 350108, China.

*Corresponding author: Mingdeng Wei, Shuping Huang

E-mail address: wei-mingdeng@fzu.edu.cn; huangshp@gmail.com

Figure S1. Full survey spectrum of hierarchical VS₂ spheres

Figure S2. (a) SEM image and (b) HRTEM image of hierarchical VS_2 spheres.

Figure S3. SEM images of hierarchical VS_2 spheres prepared in (a) 6, (b) 12, (c) 18 and (d) 24 h.

Figure S4. Nitrogen adsorption-desorption isotherms, and (b) pore size distribution of hierarchical VS₂ spheres.

Figure S5 Cycling performance of hierarchical VS₂ spheres at 5 A g^{-1} .

Figure S6 (a) CV curves at various rates from 0.2 to 4 mV s⁻¹, and (b) contribution ratio of the capacitive and diffusioncontrolled at different corresponded scan rates for hierarchical VS₂ spheres.

Figure S7 (a) TEM image and (b) HRTEM images of hierarchical VS₂ spheres after 100 cycles at 0.2 A g^{-1} .

Table S1. Electrochemical performance of VS_2 -based anode materials for SIBs.

Materials	Current density (A g^{-1})	Capacity (mA h g ⁻¹)	References
Hierarchical VS ₂	0.1 1	700 after 100 cycles 500 after 200 cycles	34
VOOH coated VS ₂	0.2	330 after 150 cycles	35
flowers			
Hierarchical flower-like VS ₂	0.1	600 after 50 cycles	31
Layer by layer stacked VS ₂	0.2 5	250 after 100 cycles 204 after 600 cycles	30
3D hierarchical VS ₂ microrods	0.2	350 after 200 cycles	33
VS ₂ single-crystal nanosheets	0.2	403 after 200 cycles	32
This work	0.2 2 5	720 after 100 cycles 565 after 1000 cycles 479 after 600 cycles	

Table S2. The fitted results of hierarchica	I VS ₂ spheres based o	n the equivalent circuit model.
---	-----------------------------------	---------------------------------

Table 32. The fitted results of merarchical v32 spheres based on the equivalent circuit model.			
	Rs	Rf	Rct
Before cycling	6	0	137
After 20 cycles	3	20	26

Figure S8 DOS and DOS for (a) H-monolayer and (b) H-bulk of VS₂, respectively.

Figure S9. (a) Schematics of free H-VS₂ monolayer; (b,c) Na adsorption on H_{center}site and T site of V atom in top and side views, respectively; (d) The structure with two-layer Na atoms adsorbed on both surfaces of VS₂ monolayer (Na₄VS₂).

Figure S10. (a) Schematics of free T-VS₂ monolayer; (b,c) Na adsorption on H_{center} site and T site of V atom in top and side views, respectively; (d) The structure with two-layer Na atoms adsorbed on both surfaces of VS₂ monolayer (Na₄VS₂).

Figure S11. PDOS and DOS for T-Na₂VS₂ monolayer.

	E _b (eV)	Capacity (m A h g ⁻¹)
1Na (T site)	-1.91	14.56
1Na (H _{center} site)	-1.88	14.56
32 Na	-0.65	466
48 Na	-0.43	699
64 No	0.24	022
04 Iva	-0.54	532
96Na	-0.23	1398

Table S3. The average energy changes per Na atom and the capacities of 1 Na, 32 Na, 48 Na, 64 Na, and 96 Na adsorbed on the VS₂ monolayer ($V_{16}S_{32}$) in H phase.

, , , , , , ,	E _b (eV)	Capacity (m A h g ⁻¹)
1No (Toito)	1.40	25.0
INA (I SILE)	-1.40	25.9
1Na (H _{center} site)	-1.38	25.9
18 Na	-0.64	466
27 Na	-0.45	699
36 Na	-0.32	932
54 Na	-0.22	1398

Table S4. The average energy changes per Na atom and the capacities of 1 Na, 18 Na, 27Na, and 36 Na adsorbed on the VS_2 monolayer (V_9S_{18}) in T phase.