Oxygen-vacancy Bi₂O₃ nanosheets arrays with excellent rate capability and CoNi₂S₄ nanoparticles immobilized on Ndoped graphene nanotubes as robust electrode materials for high-energy asymmetric supercapacitors

Jian Zhao^{a,b}, Zhenjiang Li^{a,b*}, Tong Shen^b, Xiangcheng Yuan^b,

Guanhao Qiu^a, Qingyan Jiang^c, Yusheng Lin^b, Guanying Song^a, Alan

Meng^{b*}, Qingdang Li^a

^aKey Laboratory of Polymer Material Advanced Manufacturing Technology of ShandongProvincial,College of Electromechanical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, Shandong, P. R. China.

^bState Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China. ^cOcean College, Zhejiang University, Zhoushan 316021, Zhejiang, P. R. China.

*Corresponding Author

E-mail: <u>zjli126@126.com</u> E-mail: <u>mengalan@126.com</u>

Calculations:

(1) The specific capacitances of the N-GNTs $@OV-Bi_2O_3$ NSAs or N-GNTs $@CoNi_2S_4$ NPs electrode calculated from GCD curves are obtained according to the following equation:

$$C = \frac{I\Delta t}{m\Delta V}$$

where *I* is the discharge current, Δt is the discharge time in GV test, *m* is the active material mass, and ΔV is the voltage window.

(2) The specific capacitance of the N-GNTs $@OV-Bi_2O_3$ NSAs // N-GNTs $@CoNi_2S_4$ NPs asymmetric supercapacitor (ASC) device can be got in accordance with the following equation:

$$C_{\text{device}} = \frac{I\Delta t}{M\Delta V}$$

Herein, *I* is the discharge current, Δt is the discharge time in GCD test, *M* is the total mass of both positive and negative electrodes, and ΔV is the voltage window of the device.

(3) Methods to calculate the energy and power density of the ASC device:

$$E = \frac{1}{2} C_{\text{device}} \Delta V^2 ; P = \frac{E}{t}$$

Here, C_{device} is the specific capacitance of the device, ΔV is the potential window, and *t* is the discharge time.

Fig. S1 The Raman spectrum (a), high-resolution XPS N1s (b) and C1s (c) of the pure N-GNTs.

Element name	atomic (%)
С	97.11
N	2.07
0	0.82

Tab. S1 Atomic percentage of each element in the N-GNTs obtained from the

XPS spectra.

Fig. S2 TEM image of N-GNT@Bi₂O₃ NSAs

Fig. S3 The GCD measurements of the N-GNTs@ Bi_2O_3NSAs (a) and Bi_2O_3NSAs (b).

Fig. S4 GCD curves of N-GNTs@OV_{0.5}-Bi₂O₃ (a) and N-GNTs@OV₂-Bi₂O₃ (b) at various current densities, and their specific capacitance values versus different current densities (c)

NiNTAs@ F e_2O_3 F e_2O_3 -P MoS $_2$ /GNS N- GNT@OV-	electrodeposition and calcination Hydrothermal and calcination Hydrothermal and calcination	Ti Foil carbon cloth Ni foam Graphite	1M Na ₂ SO ₄ 1M Na ₂ SO ₄ 1M Na ₂ SO ₄	418.7 (10 mV s ⁻¹) 369 (1 mV s ⁻¹) 320 (2 A g ⁻¹) 643 (1 A g ⁻¹)	g ⁻¹) ~170 (10 A g ⁻ ¹) 450 (10 A g⁻¹)	S8 S9 S10 In this
NiNTAs@ Fe2O3 Fe2O3-P MoS2/GNS	electrodeposition and calcination Hydrothermal and calcination Hydrothermal and calcination	Ti Foil carbon cloth Ni foam	1M Na ₂ SO ₄ 1M Na ₂ SO ₄ 1M Na ₂ SO ₄	418.7 (10 mV s ⁻¹) 369 (1 mV s ⁻¹) 320 (2 A g ⁻¹)	g ⁻¹) ~170 (10 A g ⁻ ¹)	S8 S9 S10
NiNTAs@ Fe ₂ O ₃ Fe ₂ O ₃ -P	electrodeposition and calcination Hydrothermal and calcination	Ti Foil carbon cloth	1M Na ₂ SO ₄ 1M Na ₂ SO ₄	418.7 (10 mV s ⁻¹) 369 (1 mV s ⁻¹)	g ⁻¹)	S8 S9
NiNTAs@ Fe ₂ O ₃	electrodeposition and calcination	Ti Foil	1M Na ₂ SO ₄	418.7 (10 mV s ⁻¹)	g ⁻¹)	S8
				(118)	g ⁻¹)	57
rGO/Fe ₂ O ₃	solvothermal	Ni foam	4M KOH	520 (1 A g ⁻¹)	443 (25 A	S 7
WO ₃	calcination	GCE	0.5M H ₂ SO ₄	508 (1 A g ⁻¹)	332.2 (20 A g^{-1})	S6
rGO/Fe ₂ O ₃	Hydrothermal	Ni foam	2М КОН	469.5 (4 A g ⁻¹)	132.4 (16 A g ⁻	S5
Fe ₂ O ₃ QDs	thermal decomposition	Ti Foil	1M Na ₂ SO ₄	347 (10 mV s ⁻¹)	140 (160 mV s ⁻¹)	S4
Bi ₂ S ₃	Hydrothermal and calcination	S-NCNF	6М КОН	466 (1 A g ⁻¹)	299 (8 A g ⁻¹)	S3
FeOOH	electrodeposition	Polyamide Nanofiber Film	2M LiCl	315 (0.5 A g ⁻¹)	194 (10 A g ⁻¹)	S2
Bi ₂ O ₃	Hydrothermal	Ni foam	6M KOH	447 (2A g ⁻¹)	260 (10 A g ⁻¹)	S 1
Material	Fabrication method	current collector	electrolyte	Specific capacitance (F g ⁻¹)	Rate performance	Refer ence

Tab. S2 Comparison of the electrochemical properties of the as-fabricated N-GNT @OV-Bi₂O₃ NNAs with previously reported negative electrode materials.

Fig. S5 Cyclic stability of the N-GNTs@OV-Bi₂O₃ NSAs negative electrode materials over 5000 cycles at 8 A g⁻¹.

Fig. S6 XPS survey spectrum of N-GNTs@CoNi $_2$ S4 NPs

Tab. S3 Electrochemical performances comparison of the as-prepared N-GNT $@CoNi_2S_4$ HNAs with other Ni-Co compound based positive electrodes fabricated by different methods.

Material	Fabrication method	current collector	electrolyte	Specific capacitance (F g ⁻¹)	Rate performance	Refer ence
NiS	Solvothermal and calcination	Carbon substrate	2М КОН	874.5 (1 A g ⁻¹)	454.5 (20 A g ⁻¹)	S11
Ni-Co-S@Ni-W- O	Hydrothermal and calcination	Ni foam	6M KOH	1988 (2 A g ⁻¹)	1500 (30 A g ⁻¹)	S12
CoNi ₂ S ₄	Chemical deposition	Ni foam	2М КОН	1530 (1 A g ⁻¹)	1346 (8 A g ⁻¹)	S13
NiCo ₂ O ₄ /CNT	Calcination	Ni foam	2М КОН	1596 (1 A g ⁻¹)	1406 (10 A g ⁻¹)	S14
NiCo2S4/Co9S8	Hydrothermal	Ni foam	6M KOH	749 (4 A g ⁻¹)	620 (15 A g ⁻¹)	S15
NiGa ₂ O ₄ NAs	Hydrothermal and calcination	Ni foam	6М КОН	1508 (1 A g ⁻¹)	960 (20 A g ⁻¹)	S16
Ni3S2@NiS	Hydrothermal	Ni foam	6М КОН	1158 (2 A g ⁻¹)	$670 (50 \text{ A g}^{-1})$	S17
NiCo ₂ O ₄	Hydrothermal and calcination	Carbon cloth	2М КОН	1055 (0.4 A g ⁻¹)	483 (10 A g ⁻¹)	S18
Co ₃ O ₄ @NiCo ₂ O ₄	Hydrothermal and calcination	Carbon cloth	2М КОН	1450 (1 A g ⁻¹)	1374 (3 A g ⁻¹)	S19
H-3DRG@NiCo- LDH	Hydrothermal	Ni foam	2М КОН	1634 (0.5 A g ⁻¹)	1260 (20 A g ⁻¹)	S20
N- GNT@CoNi2S4	Hydrothermal and sulfuration	Graphite wafer	6М КОН	2142 (2.5 A g ⁻¹)	1785 (25 A g-1)	In this work

Fig. S7 Cyclic stability of the N-GNTs@ CoNi₂S₄ NPs positive electrode materials over 5000 cycles at 12.5 A g⁻¹.

 $\label{eq:Fig.s8} \mbox{Fig. S8} \mbox{ CV curves of the N-GNTs} @OV-Bi_2O_3 \mbox{NSAs and N-GNTs} @CoNi_2S_4 \mbox{ NPs at 10 mV s} \ ^{-1}.$

Fig. S9 The Nyquist plot of the assembled N-GNTs@OV-Bi $_2O_3$ NSAs//N-GNTs@CoNi $_2S_4$ NPs

asymmetric supercapacitor.

ASC devices	Cell voltage (V)	electrolyte	Maximun energy density (Wh kg ⁻¹)	Reference
CoNi ₂ S ₄ /CNT//Fe ₂ O ₃ /CNT	1.7	2 M KOH	50 (0.847 kW kg ⁻¹)	S13
NiCo ₂ O ₄ //NC	1.6	PVA/KOH	31.9 (2.9 kW kg ⁻¹)	S18
(Ni _{0.1} Co _{0.9}) ₉ Se ₈ @CFC//rGO@CFC	1.55	PVA/KOH	17.0 (3.1 kW kg ⁻¹)	S21
ESCNF@Bi ₂ O ₃ //CF@NiCo ₂ O ₄	1.9	1M KOH	25.1 (0.786 kW kg ⁻¹)	822
LDH-NPs/CH-NWs//AC	1.6	6M KOH	58.9 (0.4 kW kg ⁻¹)	S23
Ni ₃ S ₂ /CoNi ₂ S ₄ /NF//AC/NF	1.7	6M KOH	50.7 (1.59 kW kg ⁻¹)	S24
NiCo ₂ O ₄ @Ni _x Co _y MoO ₄ //AC	1.5	PVA-KOH	64.7 (0.75 kW kg ⁻¹)	825
Co ₃ O ₄ /ZnCo ₂ O ₄ /CuO//AC	1.6	PVA-KOH	35.8 (0.80 kW kg ⁻¹)	S26
Ni(OH) ₂ -CoQD//rGO	1.45	2M KOH	46 (0.14 kW kg ⁻¹)	S27
NiCo ₂ S ₄ /NCF//OMC/NCF	1.6	6М КОН	45.5 (0.5 kW kg ⁻¹)	S28
N-GNT@CoNi ₂ S ₄ //N-GNT@OV-	1.6	6M KOH	86.6 (1.6 kW kg ⁻¹)	In this work
Bi ₂ O ₃				

Tab. S4 The maximum specific energy density comparison of our device with thereported state-of-the-art ASC devices with other nanostructures as electrode materials.

ASC devices	Cell	electrolyte	Cycle performance	Reference	
	voltage				
	(V)				
	1.5	6M KOH	81% retention after 5000		
Bi ₂ O ₃ //MnCO ₃ QDs/NiH-Mn-CO ₃			cycles	S 1	
CuCo ₂ O ₄ /CuO//rGO/Fe ₂ O ₃	1.6	2М КОН	83% retention after 5000	S5	
			cycles		
		2M KOH	84.1% retention after 5000	S27	
Ni(OH)2-CoQD//RGO	1.45		cycles		
			70.4% retention after 10000		
NiCo ₂ S ₄ /NCF //OMC/NCF	1.6	6M KOH	70.470 retention arter 10000	S28	
MnO ₂ /CNT//CNT/PPy	1.5	КОН	80% retention after 5000	S29	
			cycles		
	1.7	ЗМ КОН	81.1% retention after 1000	S30	
HP-CF-NiCo ₂ S ₄ //HP-CF-Fe ₂ O ₃			cycles		
			0.00% retention ofter 2500		
MnCo ₂ O ₄ @Ni(OH) ₂ //AC	1.6	2М КОН	90% retention after 2300	S31	
			cycles		
	•	PVA- LiCl	80% retention after 800	832	
PEDOT@MnO ₂ //C@Fe ₃ O ₄	2		cycles		
			68% retention after 5000		
NiO//Fe ₂ O ₃	1.8	2M KOH	0878 retention after 5000	833	
			cycles		
	1.6	PVA/LiCl	82% retention after 5000	624	
FeOOH/PPy@CF//MnO ₂ /CF			cycles	834	
			97% and 85.5% retention		
N-GNTs@CoNi ₂ S ₄ //N-GNTs@OV-			2. / v and octo / v recention	In this	
Bi ₂ O ₃	1.6	6M KOH	after 6000 and 10000 cycles,	work	
·			respectively		

Tab. S5 Cycle performance comparison of the assembled ASC with other state-of-the-art ASC devices with various positive and negative electrodes.

Fig. S10 The GCD curves of the first 30 cycles for the assembled device.

Fig. S11 The GCD curves of the last 20 cycles for the assembled device.

The operation mechanism of positive and negative electrodes is specifically expounded as follows.

In KOH aqueous electrolyte, the OH⁻ ions are proposed to be repeatedly embedded/detached into/from the active materials for oxidation and reduction reactions. Concretely, when the assembled ASC is charged, the positive electrode N-GNTs@CoNi₂S₄ is oxidized, representing as CoNi₂S₄ + 2OH⁻ \rightarrow CoS_{2x}OH + Ni₂S_{4.2x}OH + 2e⁻, ^{S35,S36} and the negative electrode N-GNTs@OV-Bi₂O₃ conducts the reduction reaction according to the process of Bi₂O₃ + H₂O + 2e⁻ \rightarrow Bi₂O₂ + 2OH⁻, Bi₂O₂ + 2H₂O + 4e⁻ \rightarrow 2Bi + 4OH⁻. ^{S1,S37} In terms of the discharging procedure, the reactions occur backward. It can be seen that during the charging/discharging process, as for the positive and negative electrode, one consumes OH⁻, and the other generates OH⁻. Thus, both the electrodes store the same OH⁻ group, and after charging/discharging process, the electrolyte can still make neutral. It is consistent with the operation mechanism of previous reported asymmetric supercapacitor devices with different positive/negative electrode materials in KOH aqueous solution. ^{S5,S38-S41}

References

- S1 N. M. Shinde, Q. X. Xia, J. M. Yun, R. S. Mane and K. H. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 11037.
- S2 T. T. Gao, Z. Zhou, J. Y. Yu, D. X. Cao, G. L. Wang, B. Ding and Y. J. Li, ACS Appl. Mater. Interfaces, 2018, 10, 23834.
- W. Zong, F. L. Lai, G. J. He, J. R. Feng, W. Wang, R. Q. Lian, Y. E. Miao, G. C.
 Wang, I. P. Parkin and T. X. Liu, *Small*, 2018, 14, 1801562.
- S4 H. Xia, C. Y. Hong, B. Li, B. Zhao, Z. X. Lin, M. B. Zheng, S. V. Savilov and S. M. Aldoshin, *Adv. Funct. Mater.*, 2015, 25, 627.
- S5 Y. D. Wang, C. Shen, L. Y. Niu, R. Z. Li, H. T. Guo, Y. X. Shi, C. Li, X. J. Liu and Y. Y. Gong, *J. Mater. Chem.A*, 2016, 4, 9977.
- S6 D. Mandal, P. Routh and A. K. Nandi, *Small*, 2018, 14, 1702881.
- S7 Y. Wang, Z. X. Chen, T. Lei, Y. F. Ai, Z. K. Peng, X. Y. Yan, H. Li, J. J. Zhang,
 Z. M. M. Wang and Y. L. Chueh, *Adv. Energy Mater.*, 2018, 8, 1703453.
- S8 Y. Li, J. Xu, T. Feng, Q. F. Yao, J. P. Xie and H. Xia, *Adv. Funct. Mater.*, 2017, 27, 1606728.
- S9 H. F. Liang, C. Xia, A. H. Emwas, D. H. Anjum, X. H. Miao and H. N. Alshareef, *Nano Energy*, 2018, 49, 155.
- S10 X. Yang, H. Niu, H. Jiang, Q. Wang and F. Y. Qu, J. Mater. Chem. A, 2016, 4, 11264.
- S11 X. Ma, L. Zhang, G. C. Xu, C. Y. Zhang, H. J. Song, Y. T. He, C. Zhang and D. Z. Jia, *Chemical Engineering Journal*, 2017, 22, 320.
- S12 W. D. He, Z. F. Liang, K. Y. Ji, Q. F. Sun, T. Y. Zhai and X. J. Xu, Nano

Research, 2018, 11, 1415.

- S13 X. Cao, J. He, H. Li, L. P. Kang, X. X. He, J. Sun, R. B. Jiang, H. Xu, Z. B. Lei and Z. H. Liu, *Small*, 2018, 14, 1800998.
- S14 P. Wu, S. Cheng, M. Yao, L. Yang, Y. Zhu, P. Liu, O. Xing, J. Zhou, M. Wang and H. Luo, *Adv. Funct. Mater.*, 2017, 27, 1702160.
- S15 L. R. Hou, Y. Y. Shi, S. q. Zhu, M. Rehan, G. Pang, X. G. Zhang and C. Z. Yuan, J. Mater. Chem. A, 2017, 5, 133.
- S16 S. Liu, K. S. Hui, K. N. Hui, H. F. Li, K. W. Ng, J. Xu, Z. Tang and S. C. Jun, J. Mater. Chem. A, 2017, 5, 19046.
- S17 W. Li, S. L. Wang, L. P. Xin, M. Wu and X. J. Lou, J. Mater. Chem. A, 2016, 4, 7700.
- S18 C. Guan, X. M. Liu, W. N. Ren, X. Li, C. W. Cheng and J. Wang, *Adv. Energy Mater.*, 2017, **12**, 1602391.
- S19 X. Wu, Z. C. Han, X. Zheng, S. Y. Yao, X. Yang and T. Y. Zhai, *Nano Energy*, 2017, **31**, 410.
- S20 K. Q. Qin, L. P. Wang, S. W. Wen, L. C. Diao, P. Liu, J. J. Li, L. Y. Ma, C. S.
 Shi, C. Zhong, W. B. Hu, E. Z. Liu and N. Q. Zhao, *J. Mater. Chem. A*, 2018, 6, 8109.
- S21 P. Y. Yang, Z. Y. Wu, Y. C. Jiang, Z. C. Pan, W. C. Tian, L. Jiang and L. F. Hu, *Adv. Energy Mater.*, 2018, 8, 1801392.
- S22 L. Li, X. T. Zhang, Z. G. Zhang, M. Y. Zhang, L. J. Cong, Y. Pan and S. Y. Lin, J. Mater. Chem. A, 2016, 4, 16635.

- S23 J. Yang, C. Yu, X. M. Fan and J. S. Qiu, Adv. Energy Mater., 2014, 4, 1400761.
- S24 W. D. He, C. G. Wang, H. Q. Li, X. L. Deng, X. J. Xu and T. Y. Zhai, *Adv. Energy Mater.*,2017, 7, 1700983.
- S25 P. X. Sun, W. D. He, H. C. Yang, R. Y. Cao, J. M. Yin, C. G. Wang and X. J. Xu, *Nanoscale*, 2018, **10**, 19004.
- S26 S. S. Zhou, Z. C. Ye, S. Z. Hu, C. Hao, X. H. Wang, C. Huang and F. S. Wu, *Nanoscale*, 2018, **10**, 15771.
- S27 D. W. Shi, L. Y. Zhang, N. D. Zhang, Y. W. Zhang, Z. G. Yu, H. Gong, Nanoscale, 2018, 10, 10554.
- S28 L. F. Shen, J. Wang, G. Y. Xu, H. S. Li, H. Dou and X. G. Zhang, *Adv. Energy Mater.*, 2015, **5**, 1400977.
- S29 J. L. Yu, W. B. Lu, J. P. Smith, K. S. Booksh, L. H. Meng, Y. D. Huang, Q. W. Li, J. H. Byun, Y. S. Oh, Y. H. Yan and T. W. Chou, *Adv. Energy Mater.*, 2017, 7, 1600976.
- S30 J. Z. Chen, J. L. Xu, S. Zhou, N. Zhao and C. P. Wong, *Nano Energy*, 2016, 25, 193.
- S31 Y. Zhao, L. F. Hu, S. Y. Zhao and L. M. Wu, Adv. Funct. Mater., 2016, 26, 4085.
- S32 J. F. Sun, Y. Huang, C. X. Fu, Y. Huang, M. S. Zhu, X. M. Tao, C. Y. Zhi and H. Hu, J. Mater. Chem. A, 2016, 4, 14877.
- S33 Q. Q. Tang, W. Q. Wang and G. C. Wang, J. Mater. Chem. A, 2015, 3, 6662.
- S34 X. F. Gong, S. H. Li and P. S. Lee, Nanoscale, 2017, 9, 10794.
- S35 W. Chen, C. Xia and H. N. Alshareef, ACS Nano, 2014, 8, 9531.

- S36 J. W. Xiao, L. Wan, S. H. Yang, F. Xiao and S. Wang, *Nano Lett.*, 2014, 14, 831.
- S37 L. Li, X. T. Zhang, Z. G. Zhang, M. Y. Zhang, L. J. Cong, Y. Pan and S. Y. Lin, J. Mater. Chem. A, 2016, 4, 16635.
- S38 K. A. Owusu, L. B. Qu, J. T. Li, Z. Y. Wang, K. N. Zhao, C. Yang, K. M. Hercule, C. Lin, C. W. Shi, Q. L. Wei, L. Zhou and N L. Q. Mai, *Nature Comm.*, 2017, 8, 14264.
- S39 W. K. Zhang, B. Zhao, Y. L. Yin, T. Yin, J. Y. Cheng, K. Zhan, Y. Yan, J. H. Yang and J. Q. Li, *J. Mater. Chem. A*, 2016, 4, 19026
- S40 T. Li, W. L. Zhang, L. Zhi, H. Yu, L. Q. Dang, F. Shi, H. Xu, F. Y. Hu, Z. H. Liu, Z. B. Lei, J. S. Qiu, *Nano Energy*, 2016, 30, 9.
- S41 F. Li, H. Chen, X. Y. Liu, S. J. Zhu, J. Q. Jia, C. H. Xu, F. Dong, Z. Q. Wen and Y. X. Zhang, J. Mater. Chem. A, 2016, 4, 2096.