Supporting Information

Polyoxometalate-assisted Formation of CoSe/MoSe₂ Heterostructures with Enhanced Oxygen Evolution Activity

Menglei Yuan, Sobia Dipazir, Meng Wang, Yu Sun, Denglei Gao, Yiling Bai, Min Zhang, Peilong Lu, Hongyan He, Xiangyang Zhu, Jingxian Zhang, Shuwei Li, Zhanjun Liu, Zhaopeng Luo and Guangjin Zhang*

Fig. S1 SEM images of (a) PMo₁₂@ZIF-67 and (b) ZIF-67.

Fig. S2 XRD patterns of CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S3 SEM images of (a) CoSe and (b) MoSe₂.

Fig. S4 H₂-TPR profiles for CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S5 Fermi level (E_F), valence band maximum (E_V) and onset level (Eonset) of UPS spectra for CoSe/MoSe2-900.

Fig. S6 NH₃-TPD profiles for CoSe and CoSe/MoSe₂-900.

Fig. S7 N₂ adsorption/desorption isotherm of (a) CoSe, (c) MoSe₂, (e) CoSe/MoSe₂-700, (g)

CoSe/MoSe₂-800, (i) CoSe/MoSe₂-900 and the corresponding pore size distribution of (b) CoSe, (d) MoSe₂, (f) CoSe/MoSe₂-700, (h) CoSe/MoSe₂-800, (j) CoSe/MoSe₂-900.

Fig. S8 (a) Nyquist plots of electrochemical impedance spectra (EIS) of CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900; (b) XPS spectra of N 1s for CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S9 CV curves of (a) CoSe/MoSe₂-900; (b) CoSe/MoSe₂-800; (c) CoSe/MoSe₂-700; (d) CoSe; (e) MoSe₂ with different rates from 20 to 140 mV/s; (f) \triangle J of catalysts plotted against scan rate at the potential of 1.25 V vs. RHE. The slopes were used to denote the ECSA.

Fig. S10 SEM images of (a), (c) of CoSe/MoSe₂-900-50 and (b), (d) CoSe/MoSe₂-900-75; (e) The

OER polarization curves of CoSe/MoSe₂-900-50 and CoSe/MoSe₂-900-75 and (f) the corresponding Tafel plots.

Fig. S11 The estimated Faradic efficiency of CoSe/MoSe₂-900 as function of the current density.

Fig. S12 Time-dependent current density curve of of CoSe/MoSe₂-900 under a static overpotential of 343 mV for 36000s.

Fig. S13 Polarization curves of CoSe/MoSe₂-900 in 30 wt% KOH.

Fig. S14 (a) The structure model of CoSe (002)/MoSe₂(103); (b) Planar-averaged electron density difference $\triangle P$ (z) of CoSe (002)/MoSe₂(103). Inset is the 3D isosurface of the electron density difference , where the yellow and cyan areas represent electron accumulation and depletion, respectively, and the isosurface value is set to be 0.0004 e/Å³.

Fig. S15 SEM images of CoSe/MoSe₂-900 (a) before and (b) after OER testing.

 Table S1 Comparison of OER activity of CoSe/MoSe2-900 with previously reported MOF-derived

 materials in 1.0 M KOH solution.

Table S2 Comparison of OER activity of CoSe/MoSe₂-900 with previously reported Co-based materials in 1.0 M KOH solution.

Table S3 The ICP-OES measurements of CoSe, MoSe2, CoSe/MoSe2-700, CoSe/MoSe2-800,CoSe/MoSe2-900.

Fig. S1 SEM images of (a) PMo₁₂@ZIF-67 and (b) ZIF-67.

Fig. S2 XRD patterns of CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S3 SEM images of (a) CoSe and (b) MoSe₂.

Fig. S4 H₂-TPR profiles for CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S5 Fermi level (E_F), valence band maximum (E_V) and onset level (E_{onset}) of UPS spectra for CoSe/MoSe₂-900.

Fig. S6 NH₃-TPD profiles for CoSe and CoSe/MoSe₂-900.

Fig. S7 N₂ adsorption/desorption isotherm of (a) CoSe, (c) MoSe₂, (e) CoSe/MoSe₂-700, (g) CoSe/MoSe₂-800, (i) CoSe/MoSe₂-900 and the corresponding pore size distribution of (b) CoSe, (d) MoSe₂, (f) CoSe/MoSe₂-700, (h) CoSe/MoSe₂-800, (j) CoSe/MoSe₂-900.

Fig. S8 (a) Nyquist plots of electrochemical impedance spectra (EIS) of CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900; (b) XPS spectra of N 1s for CoSe/MoSe₂-700, CoSe/MoSe₂-800 and CoSe/MoSe₂-900.

Fig. S9 CV curves of (a) CoSe/MoSe₂-900; (b) CoSe/MoSe₂-800; (c) CoSe/MoSe₂-700; (d) CoSe; (e) MoSe₂ with different scan rates from 20 to 140 mV/s; (f) \triangle J of catalysts plotted against scan rate at the potential of 1.25 V vs. RHE. The slopes were used to denote ECSA.

Fig. S10 SEM images of (a), (c) of CoSe/MoSe₂-900-50 and (b), (d) CoSe/MoSe₂-900-75; (e) The OER polarization curves of CoSe/MoSe₂-900-50 and CoSe/MoSe₂-900-75 and (f) the corresponding Tafel plots.

Note: we changed the mass of PMo₁₂ to 50 mg and 75 mg during the preparation of the PMo₁₂@ZIF-67 precursors. The subsequent preparation process was the same as CoSe/MoSe₂-900 to obtain CoSe/MoSe₂-900-50 and CoSe/MoSe₂-900-75 catalysts.

Fig. S11 The estimated Faradic efficiency of CoSe/MoSe₂-900 as function of the current density.

Rotating ring-disk electrode (RRDE) equipment was used to test the Faradaic efficiency of CoSe/MoSe₂-900 the catalysts during the OER process. As for the RRDE measurements, series of current density steps from 1 to 2 mA cm⁻² were applied to the ring electrode at 0.2 V (vs.RHE). And the corresponding ring current was also collected to check the Faradaic efficiency change with the catalytic process. The Faradaic efficiency was calculated according to:

Faradic efficiency=(2*Ir)/(n*Id)

Where Ir and Id are ring and disk current respectively; N is collection efficiency of ring electrode.

Fig. S12 Time-dependent current density curve of of CoSe/MoSe2-900 under a static overpotential of 343 mV for 36000s.

Fig. S13 Polarization curves of CoSe/MoSe₂-900 in 30 wt% KOH.

Fig. S14 (a) The structure model of CoSe (002)/MoSe₂(103); (b) Planar-averaged electron density difference $\triangle P$ (z) of CoSe (002)/MoSe₂(103). Inset is the 3D isosurface of the electron density difference , where the yellow and cyan areas represent electron accumulation and depletion, respectively, and the isosurface value is set to be 0.0004 e/Å³.

Fig. S15 SEM images of CoSe/MoSe₂-900 (a) before and (b) after OER testing.

Catalysts	Mass Ioadin g (mg/c m ²)	Electrol yte	Overpote ntial at 10 mA cm ⁻² (mV vs. RHE)	Tafel slope (mV/d ec)	Reference	
CoSe/MoSe ₂ - 900	0.3	1 М КОН	262	54.9	This work	
CeOx/CoS	0.2	1 M KOH	269	50	Angew.Chem.Int.Ed.,2018,57,8654	
NiCo@NiCoO ₂ core@shell nanoparticles	3.2	1 M КОН	~335	83.97	Adv. Mater.,2018,21,1705442	
Ni-MOF@Fe- MOF	0.2	1 М КОН	265	82	Adv. Funct. Mater.,2018,28,1801554	
Co₃O₄/CoMo O₄-50	0.255	1 М КОН	318	63	J.Mater.Chem.A.,2018,6, 1639-1647	
CoNi(20:1)-P- NS	0.153	1 M КОН	273	45	Energy Environ Sci,2017,10,893	
(Ni _{0.62} Fe _{0.38}) ₂ P	0.3	1 М КОН	290	44	Catal. Sci. Technol,2017,7,1549	
Ni@NC-800	0.31	1М КОН	280	45	Adv. Mater,2017,29,1605957	
A-CoS _{4.6} O _{0.6}	0.8	1 M	290	67	Angew.Chem.Int.Ed.,2017,56,4858	

Table S1 Comparison of OER activity of CoSe/MoSe₂-900 with previously reported MOF-derived materials in 1.0 M KOH solution.

PNCs		КОН			
Ni-Co mixed oxide cages	-	1 M КОН	380	50	Adv. Mater,2016,18,4601
Zn-doped CoSe₂/CFC	-	1 M КОН	356	88	ACS Appl.Mater.Interfaces.,2016,8,2690 2-26907
Co₃O₄/NiCo₂O ₄ cages	1	1 M КОН	340	88	J.Am.Chem.Soc.,2015,137, 5590

Catalysts	Mass Ioadin g (mg/c m ²)	Electrol yte	Overpote ntial at 10 mA cm ⁻² (mV vs. RHE)	Tafel slope (mV/d ec)	Reference	
CoSe/MoSe ₂ - 900	0.3	1 М КОН	262	54.9	This work	
CeOx/CoS	0.2	1 M КОН	269	50	Angew.Chem.Int.Ed.,2018,57,8654	
NiCo@NiCoO2 core@shell nanoparticles	3.2	1 M КОН	~335	83.97	Adv. Mater.,2018,21,1705442	
Co₃O₄/CoMo O₄-50	0.255	1 М КОН	318	63	J.Mater.Chem.A.,2018,6, 1639-1647	
CoxMoy@NC	-	1 M КОН	330	46	J.Mater.Chem.A.,2017,5, 16929	
NiCo LDHs	-	1 М КОН	367	40	Nano. Lett,2015,15,1421	
Co₃S₄@MoS₂	0.283	1М КОН	330	59	Chem. Mater,2017,29,5566	
Fe-CoOOH	0.20	1 M KOH	330	37	Adv. Energy. Mater,2017,7,1602148	

Table S2 Comparison of OER activity of CoSe/MoSe₂-900 with previously reported Co-based materials in 1.0 M KOH solution.

Co ₃ O ₄ /Fe ₂ O ₃ nanocubes	3.0	1 М КОН	310	67	Chem. Eng. J,2019,355,336
Ni2.5Co0.5Fe/N F	0.25	1 M КОН	275	99	J.Mater.Chem.A.,2016,4, 7245
NixCo2x(OH)6 x@Ni	-	1 М КОН	305	78	J. Power.Sources.,2016,317, 1

Table S3 The ICP-OES measurements of CoSe, MoSe2, CoSe/MoSe2-700, CoSe/MoSe2-800,

CoSe/MoSe₂-900.

	CoSe	MoSe ₂	CoSe/MoSe ₂ -700	CoSe/MoSe ₂ -800	CoSe/MoSe ₂ -900
Co(%)	11.21		10.92	10.34	11.04
Mo(%)	<u></u>	1.26	1.104	1.152	1.485