SUPPLEMENTARY INFORMATION

Unraveling the Role of Structural Water in Bilayer V₂O₅ during Zn²⁺-Intercalation: Insights from DFT Calculations

Tao Wu^a, Kaiyue Zhu^a, Changyong Qin^b and Kevin Huang*,^b

^a Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208

^b Department of Chemistry and Biology, Benedict College, Columbia, SC 29204

*Corresponding author: huang46@cec.sc.edu

Fig. S1 The optimized different configurations for bilayer V_2O_5 with different numbers of Zn-ion intercalation.

Fig. S2 The optimized different configurations for $V_2O_5 \cdot H_2O$ with different numbers of Zn-ion intercalation.

Fig. S3 The optimized different configurations for $V_2O_5 \cdot 1.75H_2O$ with different numbers of Zn-ion intercalation.

Fig. S4 The formation energies of Zn for V₂O₅, V₂O₅·H₂O and V₂O₅·1.75 H₂O with different numbers of Zn intercalation. The formation energies of Zn can be calculated using equation $\Delta E_f(Zn) = E(Zn_yV_{16}O_{40} \cdot xH_2O) - E(V_{16}O_{40} \cdot xH_2O) - yE(Zn).$

Fig. S5 The calculated OCV by different functional for V_2O_5 , V_2O_5 ·H₂O and V_2O_5 ·1.75 H₂O.

Method	a (Å)	b (Å)	c (Å)
PBE	11.82	3.66	11.84
optB88-vdW	11.68	3.64	11.13
optPBE-vdW	11.62	3.63	11.26
DFT-D2	11.63	3.61	11.35
$V_2O_5 \cdot nH_2O$ (exp.)	11.72	3.57	11.52

Table S1 Comparison of calculated lattice parameters of V₂O₅·1.75H₂O by different functionals.