Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Photochromic and Super Anti-Wetting Coatings Based on Natural Nanoclays

Jie Dong,^{a,b,c} Junping Zhang^{a,b*}

^a Center of Eco-material and Green Chemistry, and Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P.R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

 $^{\rm c}$ State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, 730000, Lanzhou, P.R. China

*Correspondence to jpzhang@licp.cas.cn

Fig. S1 TEM image of PAL/WO $_3$ at high magnification.

Fig. S2 TEM image of WO₃.

Fig. S3 TEM image of PAL/WO_3 at low magnification.

$C_{\text{PAL}} / (\text{g L}^{-1})$	L*	а*	b*	
0	3.68	1.23	-19.60	
5	3.72	-6.96	-21.21	
10	7.21	-6.71	-38.85	
15	13.34	-8.56	-39.49	
20	20.86	-9.37	-38.96	
30	21.18	-8.37	-38.66	
40	37.68	-7.15	-31.64	

Table S1. Color parameters of the PAL/WO₃ coatings with different C_{PAL} after UV irradiation for 3 min.

Table S2. Color parameters of the PAL/WO₃ coatings with different UV irradiation time. $C_{PAL} = 20 \text{ g L}^{-1}$.

Time / s	L*	a*	b*	
5	71.46	-5.45	-2.32	
10	69.43	-6.68	-4.92	
30	61.31	-7.62	-11.19	
60	53.68	-8.16	-17.31	
120	35.82	-8.62	-30.02	
180	20.86	-9.37	-38.96	

Table S3. Color parameters of the clay/WO3 coatings based on different clays afterUV irradiation for 3 min. $C_{clay} = 20 \text{ g L}^{-1}$.

Samples	L*	a*	b*
Halloysite/WO ₃	24.38	-6.84	-30.46
Sepiolite/WO ₃	23.86	22.84	-38.83
Kaolinite/WO ₃	38.33	-5.15	-26.14
Ca ²⁺ -MMT/WO ₃	19.75	3.77	-40.92
Laponite/WO ₃	31.61	-5.08	-32.87

Fig. S4 Photographs of different clays.

Samples	SiO ₂	AI_2O_3	MgO	TiO ₂	K ₂ O
PAL	67.05	9.75	10.54	1.04	1.41
Halloysite	49.63	42.33	0.15	0.16	0.79
Sepiolite	72.06	3.15	21.34	0.18	1.09
Kaolinite	55.86	39.46	0.09	0.02	3.69
Ca ²⁺ -MMT	70.95	14.93	1.83	0.52	0.38
Laponite	71.72	0.91	23.76	0.03	0.02

 Table S4. Chemical composition (wt.% oxides) of the clay samples measured by XRF.

Fig. S5 (a-b) SEM images of the PAL/WO₃@M-POS coating. $C_{PAL} = 20 \text{ g L}^{-1}$.

Fig. S6 (a-b) SEM images of the PAL/WO₃@fluoroPOS coating. $C_{PAL} = 20 \text{ g L}^{-1}$.

Fig. S7 Photographs showing (a) coloration process via UV irradiation and (b) decoloration process via heating at 60 °C of the PAL/WO₃@M-POS coating. Photographs showing (c) coloration process via UV irradiation and (d) decoloration process via heating at 60 °C of the PAL/WO₃@fluoroPOS coating. $C_{PAL} = 20 \text{ g L}^{-1}$.

Fig. S8 DRV spectra of (a) PAL/WO₃@M-POS and (b) PAL/WO₃@fluoroPOS coatings after 12 coloration-decoloration cycles with the original coatings for comparison. $C_{PAL} = 20 \text{ g L}^{-1}$.

Fig. S9 CA_{water} of the PAL/WO₃@M-POS coating after immersion in pH 3-11 aqueous solutions for 1 h. $C_{PAL} = 20 \text{ g L}^{-1}$.

Fig. S10 (a) CA_{water} of the PAL/WO₃@M-POS coating in 12 coloration-decoloration cycles, (b) $CA_{n-hexadecane}$ of the PAL/WO₃@fluoroPOS coating in 12 coloration-decoloration cycles. $C_{PAL} = 20 \text{ g L}^{-1}$.

Movie S1. Coloration of the PAL/WO₃ coating by UV irradiation. The play speed of the video is 3 times of the original.

Movie S2. Self-cleaning property of the PAL/WO₃@fluoroPOS coating.