Supporting Information

Nitrogen-Doped-Carbon/ZnO Modified Cu Foam Current Collector for High-Performance Li Metal Batteries

Ying Zhou,^a Kai Zhao,^a Yu Han,^a Zhenhe Sun,^a Hongtao Zhang,^{a,b} Lingqun Xu,^a

Yanfeng Ma,^{a,b} Yongsheng Chen^{a,b,*}

^aThe Centre of Nanoscale Science and Technology and Key Laboratory of Functional

Polymer Materials, Nankai University, Tianjin, 300071, China.

^bThe National Institute for Advanced Materials, Nankai University, Tianjin 300071, China.

*Corresponding author.

Tel: 86-22-2350-0693

E-mail address: yschen99@nankai.edu.cn.

Fig. S1 The low-magnification SEM images of a) CuF and b) MCuF (insets are the corresponding optical photographs).

Fig. S2 a) The TEM image of ZIF-8-600 and the corresponding EDS mapping results of b) carbon, c) nitrogen, d) zinc and e) oxygen.

Fig. S3 The XRD pattern of CuF/ZIF-8 (inset is the magnification of the selected area).

Fig. S4 The XPS survey spectrum of MCuF.

Fig. S5 O 1s spectrum of MCuF.

Fig. S6 Top view SEM images of MCuF after the a) 10th plating at 1 mA cm⁻². b) 10th plating at 3 mA cm⁻². c) 50th plating at 3 mA cm⁻². And top view SEM images of CuF after the d) 10th plating at 1 mA cm⁻². e) 10th plating at 3 mA cm⁻². f) 50th plating at 3 mA cm⁻². The area capacity is 1 mA h cm⁻².

Fig. S7 Coulombic efficiencies of Li plating/stripping on MCuF and CuF with current density of 5 mA cm^{-2} with an area capacity of 1 mA h cm^{-2} .

Reference s	Materials	Current density (mA cm ⁻²)	Area capacity (mA h cm ⁻²)	Cycle number	Coulombic efficiency (%)
1	N-doped grapehene coated	0.5	1	150	97.5
	on 3D Cu	1	2	50	97
		0.5	2	100	97.6
		0.5	4	100	97.8
2	Zn-Cu chemical dealloy	0.5	1	250	97
	-	1	1	140	97
3	Zn-Cu electrochemical		1	200	97.9
	dealloying	1	2	50	97.6
			5	50	97.1
4	Cu nanowire	1	2	200	98.6
5		1		270	98
	Hierarchically bicontinuous	1.5	1	200	96
	porous copper	2		150	95
		3		100	94
6	Vertically aligned 3D Cu	1	3	200	98.5
7	Vertically aligned CuO on	0.5	1	After 180	94
	Cu collector	1	1	After 180	94
8	3D Cu skeleton fabricate by	0.5	1	700	95
	NaCl template	1	1	400	95
9	Cu mesh	0.5	1	first 70 cycles	97
				after 100cycles	93.8
		1	1	600	97.8
This		3	1	400	97.6
work	MCuF	5	1	300	97.3
		10	1	200	96.5
		3	3	120	97.2

Table S1. Comparison of the long-term cycling performances and Coulombic efficiencies of MCuF with previously reported Cu-based current collector for Li metal anodes.

Fig. S8 Voltage profiles of Li plating/stripping on MCuF and CuF at the current density of 1 mA cm⁻² with an area capacity of 1 mA h cm⁻².

Fig. S9 Voltage-time profiles of MCuF@Li and CuF@Li symmetrical cells at the current density of 3 mA cm⁻² with an area capacity of 2 mA h cm⁻².

References:

- 1 R. Zhang, S. Wen, N. Wang, K. Qin, E. Liu, C. Shi and N. Zhao, *Adv. Energy Mater.*, 2018, 1800914.
- 2 Q. Yun, Y. B. He, W. Lv, Y. Zhao, B. Li, F. Kang and Q. H. Yang, *Adv. Mater.*, 2016, **28**, 6932-6939.
- 3 H. Zhao, D. Lei, Y.-B. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q.-H. Yang, F. Kang and J. Lu, *Adv. Energy Mater.*, 2018, **8**, 1800266.
- 4 L. L. Lu, J. Ge, J. N. Yang, S. M. Chen, H. B. Yao, F. Zhou and S. H. Yu, *Nano Lett.*, 2016, **16**, 4431-4437.
- 5 X. Ke, Y. Cheng, J. Liu, L. Liu, N. Wang, J. Liu, C. Zhi, Z. Shi and Z. Guo, *ACS Appl Mater Interfaces*, 2018, **10**, 13552-13561.
- 6 S. H. Wang, Y. X. Yin, T. T. Zuo, W. Dong, J. Y. Li, J. L. Shi, C. H. Zhang, N. W. Li, C. J. Li and Y. G. Guo, *Adv Mater.*, 2017, **29**, 1703729.
- 7 C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang and Q.-H. Yang, *Adv. Energy Mater.*, 2018, **8**,1703404.
- 8 Y. Wang, Z. Wang, D. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B. Li, F. Kang and Y. B. He, *ACS Appl Mater Interfaces*, 2018, **10**, 20244-20249.
- 9 Q. Li, S. Zhu and Y. Lu, *Adv. Funct. Mater.*, 2017, **27**, 1606422.