Supporting Information for Journal of Materials Chemistry A

MXene-derived TiO₂/reduced graphene oxide composite with an enhanced capacitive capacity for Li and K ion batteries

Yongzheng Fang, a Rong Hu, a Boya Liu, a Yingying Zhang, a Kai Zhu, *a Jun Yan, a Ke Ye, a Kui Cheng, a

Guiling Wang, ^a and Dianxue Cao* ^a

^a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

Sample	Index	2 $ heta$ (degree)	β (degree)	Diameter(nm)
TiO ₂ /RGO	(101)	25.303	0.49	16.44

Calculation method: the Scherrer equation [1]:

Diameter =
$$0.89^*\lambda/(\beta^*\cos\theta)$$
 [1]

The λ is the wavelength of the X-ray (0.15418 nm) and β is the full width at half maximum of the diffraction peak.

Table S2. The cycling performance at low and high current density contrast withliterature.

Refer	Current density (mA/g)	Cycles and retention	Current density (mA/g)	Cycles and retention
The work	200	200, 78%	1000	1000, 85%
1	140	150,83%	280	500,75%
2	100	300,68%	100	1000,65%
3	200	200, 90%	1000	1000, 70%
4	200	200, 100%	1000	600, 100%
5	100	100, 94%	500	500, 80%
6	200	100, 62.5%		
7	55.8	100, 90%	558	500, 94.6%
8	200	500, 60%		
9	500	200, 78%		
10	50	100, 96%		
11	400	400,72.8%		

Figure S1. XRD of the Ti₂AlC and the Ti₂C.

Figure S2. SEM of the multilayer Ti_2C .

Figure S3. SEM of the amorphous Ti-based intermediates.

Figure S4. XRD of the change process from the Ti_2C to amorphous state to the Ti_2C -

derived TiO_2 .

Figure S5. XPS images of GO and TiO₂/RGO composite. (a) C1s image of GO. (b) C1s

image of TiO_2/RGO . (c) Ti2p of TiO_2/RGO .

Figure S6. Cross-section SEM of the sandwich sheet-like TiO_2/RGO . The TiO_2/RGO sheets show a tight and unstacked structure, which indicates a good interaction between TiO_2 and RGO. The thickness of TiO_2/RGO sheets is about 500 nm.

Figure S7. The microtopography of Ti_2C -TiO₂. (a), (b) SEM images. (c), (d) TEM

images.

Figure S8. (a) the charge-discharge curves in the first cycle; (b) the initial CV curves.

of TiO₂/RGO.

Figure S9. The rate performance comparison of LIBs between TiO₂/RGO and other

 TiO_2 anode.

Figure S10. The charge-discharge curves of Ti_2C -TiO₂ at different current density

Figure S11. The charge-discharge curves of (a) TiO₂/RGO-60 and (b) TiO₂/RGO-180

at different current density; charge-discharge curves of (c) TiO₂/RGO-60 and (d)

TiO₂/RGO-180 at 1.0 C.

Figure S12. The 200 cycles performance of TiO_2/RGO at 2.0 C.

Figure S13. TEM image of TiO_2/RGO after cycling.

Figure S14. EIS curves at initial and after 200 cycles. (a) TiO₂/RGO (b) Ti₂C-TiO₂.

Figure S15. Normalized real and imaginary capacitances of the Ti_2C - TiO_2 .

Figure S16. The cycle performance of the LiFePO₄. The charge-discharge curves in

the illustration.

Figure S17. The performance of full cell with LiFePO₄ as cathode and TiO₂/RGO as anode. (a) the CV curve at 0.5 mV/s. (b) The charge-discharge curves at different current density. (c) The 1000 cycles performance at 1.0 A/g, the capacity retention was 78%.

Figure S18. The performance of Ti₂C-TiO₂. (a) The CV curves at different scan rates.

(b) The charge-discharge curves at different current density.

References

- 1. D. S. Bin, X. J. Lin, Y. G. Sun, Y. S. Xu, K. Zhang, A. M. Cao and L. J. Wan, 2018.
- 2. J. Y. Hwang, J. Kim, T. Y. Yu, S. T. Myung and Y. K. Sun, *Energy & Environmental Science*, 2018.
- 3. W. Wang, J. H. Zhou, Z. P. Wang, L. Y. Zhao, P. H. Li, Y. Yang, C. Yang, H. X. Huang and S. J. Guo, Advanced Energy Materials, 2018, **8**.
- 4. C. Li, X. Hu and B. Hu, *Electrochimica Acta*, 2017, **253**.
- 5. X. P. Wang, K. Han, D. D. Qin, Q. Li, C. Y. Wang, C. J. Niu and L. Q. Mai, *Nanoscale*, 2017, **9**, 18216-18222.
- 6. Z. Tai, Q. Zhang, Y. Liu, H. Liu and S. Dou, *Carbon*, 2017, **123**.
- 7. R. Hao, H. Lan, C. Kuang, H. Wang and L. Guo, *Carbon*, 2018, **128**.
- P. C. Lian, Y. F. Dong, Z. S. Wu, S. H. Zheng, X. H. Wang, S. Wang, C. L. Sun, J. Q. Qin, X. Y. Shi and X. H. Bao, *Nano Energy*, 2017, 40, 1-8.
- 9. J. Z, Z. S, X. Z, Z. Q, Q. Y and Q. Y, Acs Appl Mater Interfaces, 2016, **8**, 20682-20690.
- 10. K. Share, A. P. Cohn, R. Carter, B. Rogers and C. L. Pint, Acs Nano, 2016, 10.
- 11. N. Li, F. Zhang and Y. B. Tang, *Journal of Materials Chemistry A*, 2018, **6**, 17889-17895.
- 12. J. Chen, W. Song, H. Hou, Z. Yan, M. Jing, X. Jia and X. Ji, *Advanced Functional Materials*, 2016, **25**, 6793-6801.
- 13. S. X. Yu, L. W. Yang, Y. Tian, P. Yang, F. Jiang, S. W. Hu, X. L. Wei and J. X. Zhong, *Journal of Materials Chemistry A*, 2013, **1**, 12750-12758.
- 14. W. Donghai, C. Daiwon, L. Juan, Y. Zhenguo, N. Zimin, K. Rong, H. Dehong, W. Chongmin, L. V. Saraf and Z. Jiguang, *Acs Nano*, 2009, **3**, 907-914.
- 15. Y. Cai, H. E. Wang, S. Z. Huang, M. F. Yuen, H. H. Cai, C. Wang, Y. Yu, Y. Li, W. J. Zhang and B. L. Su, *Electrochimica Acta*, 2016, **210**, 206-214.
- 16. J. Liu, Z. Ping, T. Han, J. Huang, J. Liu, J. Li and P. V. Braun, *Materials Letters*, 2018, **219**, S0167577X18302428.
- 17. X. Li, G. Wu, L. Xin, L. Wei and M. Li, *Nano Energy*, 2017, **31**, 1-8.
- 18. D. H. Lee, B. H. Lee, A. K. Sinha, J. H. Park, M. S. Kim, J. Park, H. Shin, K. S. Lee, Y. E. Sung and T. Hyeon, *Journal of the American Chemical Society*.
- 19. Y. Cheng, C. Zheng, H. Wu, M. Zhu and Y. Lu, *Advanced Functional Materials*, 2016, **26**, 1487-1487.