## **Electronic Supplementary Information**

## Interfacial Competition between Borophene-Based Cathode and Electrolyte for the Multiple-Sulfide Immobilization of Lithium Sulfur Battery<sup>†</sup>

Dewei Rao,ª‡ Xiaojing Liu,<sup>b</sup>‡ Huan Yang,ª Linyan Zhang,<sup>c</sup> Guanjun Qiao†, Xiangqian Shen,\*ª Yan Xiaohong,ª Gongming Wang\*<sup>b</sup> and Ruifeng Lu\*<sup>c</sup>

<sup>a</sup> School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. Email: shenxq@ujs.edu.cn

<sup>b</sup> Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China. Email: wanggm@ustc.edu.cn

<sup>c</sup> Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China. Email: rflu@njust.edu.cn



**Fig. S1** Band structures and density of state (DOS) of borophene sheets. (The Fermi level has been shifted to zero).



Fig. S2 Optimized structures of single  $Li_2S_n$  on borophene sheets.



Fig. S3 Optimized structures of  $Li_2S_n$  around solvents (DOL and DME) of electrolyte.

|                  | DOL     | DME     |
|------------------|---------|---------|
| ΔΒ               | -0.3492 | -0.2521 |
| $\beta_{12}B$    | -0.3779 | -0.2793 |
| χ <sub>3</sub> Β | -0.3075 | -0.247  |

Table S1. Binding energies of DOL and DME on borophene sheets. (unit: eV)



Fig. S4 Optimized structures for multi- $Li_2S_n$  on borophene sheets.



Fig. S5 The optimized structure of 16  $Li_2S_8$  on  $\chi_3B$ .



Fig. S6 The charge re-distribution among  $Li_2S_8$  molecules. Green areas: charge accumulation, blue areas: charge depletion.



Fig. S7 The geometric structures of multiple  $Li_2S_4$  and  $Li_2S_8$  on borophene nanosheets after 25 ps FP-MD simulations at 300 K with both DOL and DME molecules included.



Fig. S8 Density of state for  $Li_2S_n$  (n=4,8) on borophenes.



**Fig. S9** Band structures of  $mLi_2S_8$  (m=4,8) on borophenes.

## The Mass Loading of Sulfur on graphene

To test the method of mass loading, we firstly optimized 8  $Li_2S_8$  on graphene, as in Fig. S10, from which from which we know that graphene cannot hold such an amount of sulfides, and lot of sulfides are clustered and leave away from graphene. And then, we found that 4  $Li_2S_8$  can be effectively adsorbed on both side of graphene for the average binding energy slightly higher (~0.05 eV) than  $Li_2S_8$  to solvents. In optimized  $4Li_2S_8@$ graphene, the total sulfur loading is ~40 wt%. More calculation demonstrated that one  $Li_2S_8$  cannot be efficiently adsorbed on graphene for the lower binding energy of one  $Li_2S_8$  on graphene than that to solvents. Therefore, the utilized sulfur on graphene should be 33.36 wt% for effectively used molecules of 3  $Li_2S_8$ .

We only find few experimental works about pure graphene cathodes of Li-S battery. Li et al. [*Chem. Commun.*, 2012, **48**, 4106–4108] prepared graphene-sulfur mixture as the cathode of Li-S battery, in which the mass of pure sulfur is 67 wt%. Based on their measurement data, the initial discharge capacity is 767 mAh g<sup>-1</sup>, indicating that the sulfur utilization is 30.7 wt% of mixture (67 wt% × 767/1675 = 30.68 wt%, where the 1675 represents the theoretical capacity of sulfur of 1675 mAh g<sup>-1</sup>), only slightly lower than our predicted result. Although, lot of factors are neglected or simplified, our result is still closer to experimental data, which can be attributed to some positive affect from practical conditions, including attraction from lithium salts, porous surfaces and additives. Moreover, the experimental data of the mass loading of sulfur is evaluated based on pure sulfur mixed with host materials, which is much higher than real sulfur utilization. Meanwhile, our calculated sulfur mass loading can represent the theoretical initial utilization of sulfur. Hence, our method should be more scientific to qualitatively evaluate potential hosts.

Overall, our method about sulfur loading should be reasonably used to evaluate host materials.



Fig. S10 The optimized structure of  $8Li_2S_8$  on monolayer graphene