High-loading individually dispersed NiCo₂O₄ anchoring on Checkerboard-like C/CNT Nanosheets as binder-free high rate electrode for lithium storage

Hanwei Wang^{1†}, Lintong Hu^{2†}, Chao Wang¹, Qingfeng Sun^{1*}, Huiqiao Li^{2*}, Tianyou Zhai²

¹School of Engineering, Zhejiang A&F University, Hangzhou 311300, China.

²State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China

[†]These authors contributed equally to this work.

*Corresponding author: Qingfeng Sun (<u>qfsun@zafu.edu.cn</u>) and Huiqiao Li (<u>hqli@hust.edu.cn</u>)

Fig. S1. SEM and TEM images of (a) pure cellulose 2D-network, (b) pure CNTs and (c) original NiCo₂O₄.

Fig. S2. SEM and TEM images of (a) $NiCo_2O_4$ @cellulose/CNT nanosheets, (b) $NiCo_2O_4$ @cellulose and (c) CNT@cellulose.

Fig. S3. FTIR spectra of pure CNT, pure NiCo₂O₄, pure cellulose and NiCo₂O₄@cellulose/CNT nanosheets. As for the pure CNT, the observed two peaks at 1622 and 1392 cm⁻¹ correspond to the antisymmetric stretching and symmetric stretching of COO-, indicating the existence of carboxyl groups on the surface of carbon. The same peaks also are observed in pure NiCo₂O₄, which may be provided by the adsorbed $C_2O_4^{2-}$ (raw material) or the -COO⁻. The existence of carboxyl groups and oxygen atom on the surface of CNT and NiCo₂O₄ provide the foundation for the formation of the hydrogen bond to the polyhydroxy cellulose, leading to the shifting of –OH bond from 3448 cm⁻¹ of cellulose to the 3403 cm⁻¹ of NiCo₂O₄@cellulose/CNT.

Fig. S4. SEM images of (a) cellulose-derived carbon nanosheets and (b) C/CNT nanosheets; (c) TG curve of the pure cellulose under Ar atmosphere. After pyrolysis process, the mass of cellulose only retained 10.75%, representing to the carbon content.

Fig. S5. TEM images of NiCo₂O₄/CNT.

Fig. S6. SEM images of N@C/CNT-89.1.

Fig. S7. TEM images of (a) N@C/CNT-61.4, (b) N@C/CNT-77.6 and (c) N@C/CNT-89.1.

Fig. S8. (a) Survey spectrum, (b) Ni2p, (c) Co2p, and (d) C1s spectra of N@C/CNT-

As shown in **Fig. S8a**, the two typical characteristic peaks at 856.9 and 874.3 eV in the Ni 2p emission spectrum were corresponding to the two spin-orbit doublets of Ni $2p_{1/2}$ and Ni $2p_{3/2}$. It could be fitted with the six Gauss peaks, 853.6 and 871.4 eV corresponded to the Ni $2p_{3/2}$ and Ni $2p_{1/2}$ in Ni³⁺, 855.5 and 873.2 eV indexed to the Ni $2p_{3/2}$ and Ni $2p_{1/2}$ in Ni²⁺, and 860.6 and 878.7 eV were the satellite peaks. Similarly, the two states of the Co were observed in Co 2p emission spectrum (**Fig. S8b**). The peaks at 779.2 and 794.5 eV were attributed to the Co³⁺. The other peaks at 780.7 and 796.3 eV were indexed to the Co²⁺. The results of XPS indicated the coexistence of Co²⁺/Co³⁺ and Ni²⁺/Ni³⁺ in N@C/CNTs, which conformed to the components of NiCo₂O₄ in previously reports. **Fig. S8c** displayed the C 1s emission spectrum of the N@C/CNT-85.1, which could be fitted to four peaks centered at 284.6, 285.2, 286.7 and 289.1 eV, corresponding to the C=C, C-C, C-O and C=O groups, respectively. The largest C=C peak indicated highly graphitization of carbon that was mainly provided by CNTs.

Fig. S9. (a) N_2 adsorption-desorption isotherms and (b) pore size distributions of the

N@C/CNT-85.1, pure NiCo₂O₄ and NiCo₂O₄/CNT.

Fig. S10. Preparation processes of the binder-free N@C/CNTs electrode. The size, morphology and mass of the N@C/CNTs aerogels can be **controlled easily** in freezedrying and carbonization processes. Here, we used a low mass specimen (~5 mg) to demonstrate this preparation processes of the binder-free electrode. The obtained binder-free electrode possess a strong adhesion with the carbon-coated Cu foil. Even after the damage experiment, the sample is still firmly adhered on the surface of the substrate, which might be due to the self-assembly of the nanosheets as well as the combination of the active functional groups between the nanosheets and carbon-coated Cu foil. After the scratch test by the knife, compared to the pulverization and fall off of the NiCo₂O₄/CNT electrode, the N@C/CNT-85.1 electrode had a tearing cut. It confirmed the existence of the action forces between the nanosheets, suggesting

it possesses a well strength as the binder-free electrode.

Fig. S11. SEM images of cross section of N@C/CNT-85.1 electrode (a) before and (b) after a compression disposing at the pressure of 20 MPa, when the mass loading of N@C/CNT-85.1 is 2.3 mg cm⁻².

Fig. S12. The first three voltage-capacity curves of (a) N@C/CNT-85.1, (c) pure C/CNT nanosheets, (e) pure NiCo₂O₄ and (g) NiCo₂O₄/CNT at 0.1 A g^{-1} ; CV curves

of (b) pure C/CNT nanosheets, (d) pure NiCo₂O₄ and (f) NiCo₂O₄/CNT at a scanning rate of 0.2 mV s⁻¹ in the voltage range of 0–3.0 V.

Fig. S13. The TEM images of N@C/CNT-85.1 after the rate tests. The interplanar distance of 0.28 and 0.24 nm might be contributed by the Co_3O_4 and NiO NPs.

Fig. S14. The SEM and TEM images of NiCo₂O₄/CNT electrode after cycling.

Fig. S15. (a) Nyquist plots of N@C/CNT-85.1 electrode under the mass loading of 12.8 mg cm⁻² before and after 1000 cycles; (b) R_{SEI} and R_{ct} performance of N@C/CNT-85.1. After cycling, the values of R_{SEI} and R_{ct} in this electrode increased by just 4.3 and 56 Ω , respectively.

Fig. S16. N@C/CNT-85.1 after 4000 cycles: (a) HAADF-STEM image; (b-f) elemental mapping images; (g) TEM image; (h) HRTEM image.

Fig. S17. Charge/discharge curves and rate performance at $0.1\sim2.0$ C: (a) the charge/discharge voltage profile and (b) rate performance of half-cell using LiCoO₂ as cathode; (c) the typical charge/discharge voltage profile (the 5th cycle) and (d) rate performance of full-cell using LiCoO₂ as cathode and N@C/CNT-85.1 as anode. The electrochemical performances of commercial LiCoO₂ was assessed by half-cell in Fig. S17a, b, showing the capacities of 102, 92, 87, 70 mAh g⁻¹ at 0.1, 0.5, 1, and 2C, respectively (1C=274 mA g⁻¹). The capacity of N@C/CNT-85.1 electrode (12.8 mg cm⁻²) at 1 C is about 900 mAh g⁻¹. Thus, to ensure good capacity matching of the electrodes, the cathode/anode mass ratio in full-cell was ~12:1 (N/P capacity ratio of 1.08). The theoretical capacity Q_{total} calculated by the following Equation: $1/Q_{total}=1/Q_{anode}+1/Q_{cathode}$. Where Q_{anode} and Q_{cathode} are the measured gravimetric capacity of anode and cathode at 1 C.

Description	Mass loading (mg cm ²)	TMOs content s (%)	Reversibl e capacity (mAh g ⁻¹)	Cycling stability a (%)	ICE ^b (%)	High rate capabilit y (%)	Referenc e
N@C/CNT-85.1	1.8~2.3 mg cm ⁻²	85.1%	1208 mAh g ⁻¹ at 0.1 A g ⁻ 1	92.9% after 4000 cycles at 20 A g ⁻¹	78.7%	830 mAh g ⁻¹ at 20 A g ⁻¹	This work
Hollow- structured NiCo ₂ O ₄ /CNT nanocomposite		56%	1005 mAh g ⁻¹ at 0.2 A g ⁻ 1	72% after 200 cycles at 0.5 A g ⁻¹	62%	643 mAh g ⁻¹ at 5 A g ⁻¹	[1]
Urchin-like NiCoO ₂ @C nanocomposites	0.8 mg cm ⁻²	82%	1201 mAh g ⁻¹ at 0.4 A g ⁻	76% after 200 cycles at 0.4 A g ⁻¹	62.7%	About 300 mAh g ⁻¹ at 1.6 A g ⁻¹	[2]
NiCo ₂ O ₄ @GO hybrid composite	0.65 mg cm ⁻²	85%	1046 mAh g ⁻¹ at 0.05 A g ⁻¹	75.5% after 100 cycles at 0.1 A g ⁻¹	77.6%	387 mAh g ⁻¹ at 4 A g ⁻¹	[3]
1D porous NiCo ₂ O ₄ microrods			1036 mAh g ⁻¹ at 0.1 A g ⁻	75% after 600 cycles at 0.5 A g ⁻¹		700.5 mAh g ⁻¹ at 2 A g ⁻¹	[4]
NiCo ₂ O ₄ nanoneedles@C	0.45 mg cm ⁻²		1005 mAh g ⁻¹ at 0.2 A g ⁻	102.7% after 200 cycles at 0.1 A g ⁻¹	71.38 %	Low rate capability	[5]
Yolk-shell NiCo ₂ O ₄ microspheres	2-3 mg		1203 mAh g ⁻¹ at 0.4 A g ⁻	98.2% after 100 cycles at 1 A g ⁻¹	54.85 %	813 mAh g ⁻¹ at 5 A g ⁻¹	[6]
NiCo ₂ O ₄ @ ZnCo ₂ O ₄	0.9-1.1 mg cm ⁻²		1176.1 mAh g ⁻¹ at 0.1 A g ⁻ 1	107.8% after 600 cycles at 5 A g ⁻¹	76.3%	950.4 mAh g ⁻¹ at 5 A g ⁻¹	[7]
Carbon coated 3D NiCo ₂ O ₄	2.1-2.3 mg	54.8%	929.46 mAh g ⁻¹ at 0.5 A g ⁻	82.9% after 100 cycles at 0.5 A g ⁻¹	74.3%		[8]
FeOx@ cellulose-carbon composite			1204.7 mAh g ⁻¹ at 0.2 A g ⁻¹	97% after 300 cycles at	70.9%	287.7 mAh g ⁻¹ at 5 A g ⁻¹	[9]

Table S1. A survey of electrochemical performances of anode in LIBs.

		\sim		1 A g ⁻¹			
Co organic	~1.5		1301	98.6%	60.6%	496 mAh	[10]
frameworks@C	mg	\mathbf{A}	mAh g ⁻¹	after		g ⁻¹ at 20	
	cm ⁻²		at 0.1 A g ⁻	2000		A g ⁻¹	
	•		1	cycles at			
				10 A g ⁻¹			
CoO/C	~0.8~1.	\backslash	835.9	118.6%	70.6%	400 mAh	[11]
	2 mg	$\mathbf{\lambda}$	mAh g ⁻¹	after		g ⁻¹ at 5 A	
	cm ⁻²		at 0.2 A g ⁻	300		g ⁻¹	
	•		1	cycles at			
				0.2 A g ⁻¹			
Fe ₃ O ₄ @C	\backslash	91%	1204	98.4%	79%	606 mAh	[12]
	\mathbf{A}		mAh g ⁻¹	after		g ⁻¹ at 10	
			at 0.5 A g-	1000		A g ⁻¹	
			1	cycles at			
				1 A g ⁻¹			
	<u> </u>						
$CNT(a)Co_3O_4$	4 mg	60%	957 mAh	109%	74.8%	/II mAh	[13]
	cm ⁻²		g^{-1} at 0.1	after		g^{-1} at I A	
			A g ⁻¹	100		g-1	
				cycles at			
		5 0 (0)	(2) 11	0.1 A g ⁻¹	5 0.00/	2.50 + 1	F4 43
MnO@C	1 mg	79.6%	682 mAh	100%	59.9%	358 mAh	[14]
	cm ⁻²		g^{-1} at 0.1	after		g^{-1} at 5 A	
			A g ⁻¹	1000		g-1	
				cycles at			
	、	510 /	1451	0.5 A g^{-1}	40.20/	2.47 4.1	F1 73
CoO(<i>a</i>) graphitic	\mathbf{X}	51%	1451	83%	49.3%	24 / mAn	[15]
nanotubes			niAn g ·	allel 80		g·at 5 A	
			1 0.1 A g	$0.1 \Lambda \sigma^{-1}$		g	
SnO ₂ /Graphene	3 mσ	1	1560	93%	76.6%	360 mAh	[16]
5110 ^{2/} Oraphene	5 mg	\mathbf{A}	$mAh \sigma^{-1}$	after	/0.0/0	σ^{-1} at 5 A	[10]
	cm ²		at $0.1 \text{ A } \sigma^{-1}$	100		o ⁻¹	
			1	cycles at		Б	
				0.2 A g ⁻¹			
Carbon doped	1 mg	<u>``</u> `	907 mAh	104%	78.2%	853 mAh	[17]
$C_{0_3}O_4$	cm^{-2}	\mathbf{A}	g ⁻¹ at 0.5	after		g ⁻¹ at 10	L · J
5 1	UIII		A g ⁻¹	300		A g ⁻¹	
			C	cycles at		e	
				0.5 A g ⁻¹			
Porous current			1140	69%		601 mAh	[18]
collector	\mathbf{N}	\mathbf{N}	mAh g ⁻¹	after	\mathbf{N}	g-1 at 20	
$@Co_2VO_4@C$			at 0.2 A g ⁻	1000		A g ⁻¹	
			1	cycles at			
	<u> </u>	<u> </u>		1 A g ⁻¹	\		
MnO@C/rGO	\mathbf{N}	\backslash	791 mAh	116%	\backslash	562 mAh	[19]
	\mathbf{N}	\mathbf{N}	g ⁻¹ at 0.38	after	\mathbf{N}	g ⁻¹ at 7.6	
			A g ⁻¹	160		A g ⁻¹	
				cycles at			
				0.38 A			
	<u>, </u>		0.50 +1	<u>g</u> -1		206 11	FO 07
$CoFe_2O_4(a)C$	\mathbf{N}	37.2%	858 mAh	96%	64.2%	306 mAh	[20]
	\mathbf{N}		g^{-1} at 0.1	after		g^{-1} at 30	
			A g ⁻¹	1000		A g ⁻¹	
				cycles at			
	. \	•		3 A g ⁻¹			

^a The cycling stability is calculated by Cn/Cs \times 100% (Cn is the discharge capacity at

the n cycle; Cs is the initial discharge capacity)

^b Initial coulombic efficiency

Reference

(1) Wang, J.; Wu, J.; Wu, Z.; Han, L.; Huang, T.; Xin, H. L.; Wang, D. High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured

NiCo2O4/CNT nanocomposite. Electrochim. Acta 2017, 244, 8-15.

(2) Liang, J.; Xi, K.; Tan, G.; Chen, S.; Zhao, T.; Coxon, P. R.; Kim, H.-K.; Ding, S.;
Yang, Y.; Kumar, R. V. Sea urchin-like NiCoO₂@C nanocomposites for Li-ion batteries and supercapacitors. *Nano Energy* 2016, *27*, 457-465.

(3) Rong, H.; Qin, Y.; Jiang, Z.; Jiang, Z.-J.; Liu, M. A novel NiCo2O4@GO hybrid composite with core-shell structure as high-performance anodes for lithium-ion batteries. *J. Alloy. Compd.* **2018**, *731*, 1095-1102.

(4) Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K. Y.; Shao, M. Hierarchical NiCo2O4 Micro-/nanostructures with Tunable Morphologies as Anode Materials for Lithium- and Sodium-Ion Batteries. *ACS Appl. Mater. Inter.* **2017**, *9* (19), 16194-16201.

(5) Zhou, G.; Wu, C.; Wei, Y.; Li, C.; Lian, Q.; Cui, C.; Wei, W.; Chen, L. Tufted NiCo2O4 Nanoneedles Grown on Carbon Nanofibers with advanced electrochemical property for Lithium Ion Batteries. *Electrochim. Acta* **2016**, *222*, 1878-1886.

(6) Leng, J.; Wang, Z.; Li, X.; Guo, H.; Li, T.; Liang, H. Self-templated formation of hierarchical NiCo2O4 yolk-shell microspheres with enhanced electrochemical properties. *Electrochim. Acta* **2017**, *244*.

(7) Xin, H.; Li, D.; Shi, L.; Ji, M.; Lin, Y.; Yu, J.; Yang, B.; Li, C.; Zhu, C. A simple approach to fabricate of Ni-NiCo2O4@ZnCo2O4 yolk-shell nano-tetrahedron composite as high-performance anode material for lithium-ion batteries. *Chem. Eng.*. *J.* **2018**, *341*, 601-609.

(8) Wang, K.; Huang, Y.; Wang, M.; Yu, M.; Zhu, Y.; Wu, J. PVD amorphous carbon

coated 3D NiCo2O4 on carbon cloth as flexible electrode for both sodium and lithium storage. *Carbon* **2017**, *125*, 375-383.

(9) Li, M.; Du, H.; Kuai, L.; Huang, K.; Xia, Y.; Geng, B. Scalable dry-production of superior 3D net-like FeOx/C composite anode material for lithium ion battery. *Angew. Chem. Int. Edit.* **2017**, *56* (41), 12649-12653.

(10) Xiao, P.; Bu, F.; Zhao, R.; Aly Aboud, M. F.; Shakir, I.; Xu, Y. Sub-5 nm Ultrasmall Metal-Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage. *ACS Nano* **2018**.

(11) Wu, F.; Zhang, S.; Xi, B.; Feng, Z.; Sun, D.; Ma, X.; Zhang, J.; Feng, J.; Xiong,
S. Unusual Formation of CoO@C "Dandelions" Derived from 2D Kagóme MOLs for
Efficient Lithium Storage. *Adv. Energy Mater.* 2018, 1703242.

(12) Liu, B.; Zhang, Q.; Jin, Z.; Zhang, L.; Li, L.; Gao, Z.; Wang, C.; Xie, H.; Su, Z.
Uniform Pomegranate - Like Nanoclusters Organized by Ultrafine Transition Metal
Oxide@Nitrogen - Doped Carbon Subunits with Enhanced Lithium Storage
Properties. *Adv. Energy Mater.* 2018, 8 (7), 1702347.

(13) Chen, Y.; Wang, Y.; Wang, Z.; Zou, M.; Zhang, H.; Zhao, W.; Yousaf, M.; Yang,
L.; Cao, A.; Han, R. P. Densification by Compaction as an Effective Low - Cost
Method to Attain a High Areal Lithium Storage Capacity in a CNT@ Co3O4 Sponge. *Adv. Energy Mater.* 2018, 1702981.

(14) Zhu, G.; Wang, L.; Lin, H.; Ma, L.; Zhao, P.; Hu, Y.; Chen, T.; Chen, R.; Wang,Y.; Tie, Z. Walnut - Like Multicore - Shell MnO Encapsulated Nitrogen - RichCarbon Nanocapsules as Anode Material for Long - Cycling and Soft - Packed

Lithium - Ion Batteries. Adv. Functional Mater. 2018, 28 (18), 1800003.

(15) Tabassum, H.; Zou, R.; Mahmood, A.; Liang, Z.; Wang, Q.; Zhang, H.; Gao, S.;
Qu, C.; Guo, W.; Guo, S. A Universal Strategy for Hollow Metal Oxide Nanoparticles
Encapsulated into B/N Co - Doped Graphitic Nanotubes as High - Performance
Lithium - Ion Battery Anodes. *Adv. Mater.* 2018, *30* (8), 1705441.

- (16) Chen, W.; Song, K.; Mi, L.; Feng, X.; Zhang, J.; Cui, S.; Liu, C. Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. *J. Mater. Chem. A* **2017**, *5* (20), 10027-10038.
- (17) Yan, C.; Zhu, Y.; Li, Y.; Fang, Z.; Peng, L.; Zhou, X.; Chen, G.; Yu, G. Local
 Built In Electric Field Enabled in Carbon Doped Co₃O₄ Nanocrystals for Superior
 Lithium Ion Storage. *Adv. Funct. Mater.* 2018, 28 (7), 1705951.
- (18) Zhu, C.; Liu, Z.; Wang, J.; Pu, J.; Wu, W.; Zhou, Q.; Zhang, H. Novel Co2VO4 Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for High - Performance Li - Ion Batteries. *Small* **2017**, *13* (34).
- (19) Liu, D.-H.; Lü, H.-Y.; Wu, X.-L.; Hou, B.-H.; Wan, F.; Bao, S.-D.; Yan, Q.; Xie,
 H.-M.; Wang, R.-S. Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. *J. Mater. Chem. A* 2015, *3* (39), 19738-19746.
- (20) Zhang, L.; Wei, T.; Jiang, Z.; Liu, C.; Jiang, H.; Chang, J.; Sheng, L.; Zhou, Q.;
 Yuan, L.; Fan, Z. Electrostatic interaction in electrospun nanofibers: Double-layer carbon protection of CoFe₂O₄ nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage. *Nano Energy* 2018, *48*, 238-247.

(21) Qiu, H.; Zeng, L.; Lan, T.; Ding, X.; Wei, M., In situ synthesis of GeO₂/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries. *J. Mater. Chem. A* **2014**, *3* (4), 1619-1623.

(22) Zhan, L.; Wang, S.; Ding, L.-X.; Li, Z.; Wang, H., Binder-free Co–CoO_x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life. *J. Mater. Chem. A* **2015**, *3* (39), 19711-19717.

(23) Liang, P.; Zhang, H.; Su, Y.; Huang, Z.; Wang, C.-A.; Zhong, M., In situ preparation of a binder-free nano-cotton-like CuO–Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries. *J. Mater. Chem. A* **2017**, *5* (37), 19781-19789.

(24) Wang, J.-G.; Sun, H.; Liu, H.; Jin, D.; Zhou, R.; Wei, B., Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. *J. Mater. Chem. A* **2017**, *5* (44), 23115-23122.

(25) Wan, Y.; Yang, Z.; Xiong, G.; Luo, H., A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe₃O₄ for high-performance flexible and binder-free lithium-ion battery anodes. *J. Mater. Chem. A* **2015**, *3* (30), 15386-15393.

Botas, C.; Carriazo, D.; Singh, G.; Rojo, T., Sn– and SnO₂–graphene flexible
foams suitable as binder-free anodes for lithium ion batteries. *J. Mater. Chem. A* 2015, *3* (25), 13402-13410.

(27) Yan, F.; Tang, X.; Wei, Y.; Chen, L.; Cao, G.; Zhang, M.; Wang, T., Stannous ions reducing graphene oxide at room temperature to produce SnOx-porous,

carbon-nanofiber flexible mats as binder-free anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3 (24), 12672-12679.

(28) Zhang, L.; Wu, H. B.; Lou, X. W., Growth of SnO₂ nanosheet arrays on various conductive substrates as integrated electrodes for lithium-ion batteries. *Mater. Horiz.* **2013**, *1* (1), 133-138.