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S1. TH NMR and 3C NMR spectrum of Cg-PyP.
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Figure S1. '"H NMR spectrum of Cg-PyP in CS,/d-acetone solution.
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Figure S2. 13C NMR spectrum of Cyo-PyP in CS,/d-acetone solution.
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S2. Mass spectrum of Cg-PyP.
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Figure S3. MALDI-TOF Mass spectra of Cgo-PyP.

S3. Estimation of the energy levels of Cg-PyP.

Table S1. Electrochemical data of C¢-PyP and PCBM.

Aonset”  BEgopt®  Ered, onset® Erumo? Eromo*
(nm) (eV) (eV) (eV) (eV)
Ceo-PyP 123 1.72 -0.94 -3.89 -5.61
Coo-MPy 724 1.71 -1.00 -3.80 -5.51
Cso-Bpy 724 1.71 -0.99 -3.81 -5.52
Cy-HPy 724 1.71 -0.97 -3.83 -5.54
PCBM 725 L1 -0.98 -3.82 -5.53

a Attained from UV-vis spectrum; ° Eg o, =1240/Aonser; © Referred to the half wave potential of
ferrocene; d ELUMO:'e(E red, onset +4.8 V), ¢ ElrlOMO:ELUMO'Eg, opt
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R= methyl CGO-MPy
n-butyl Ceo-BPy
n-hexyl Ceo-HPy

The structure of PCBM and Cg-Py.

The energy levels of the lowest unoccupied molecular orbital (LUMO) and highest occupied
molecular orbital (HOMO) of the fullerene derivatives were estimated by a cyclic voltammetry
study in combination with UV-Vis absorption spectroscopy. Cyclic voltammetry study was
performed in o-dichlorobenzene with a CHI 630D potentiostat (CHI Instrument, U.S.A.) at room
temperature. The supporting electrolyte was tetrabutylammonium perchlorate (TBPA,
electrochemical grade, Fluka). A standard three-electrode arrangement of a platinum (Pt) wire as
counter electrode, a platinum coil as working electrode, and a saturated calomel electrode as a
pseudo-reference electrode was used. In a comparison experiment, ferrocene (Fc) was added as the

internal standard and all potentials are referred to the Fc*/Fc couple.

The onset reduction potentials (Ereq, onset) 0f Co0-PyP, Ceo-BPy was estimated to be -0.94 V vs
Fc*/Fc. Thus, the LUMO energy levels of Cq-PyP was calculated by E; ymo= -€(Ered, onset T 4-8).
The HOMO energy level of Cg-PyP was calculated by Eyomo=Eg, opt - ELumo,! Where Eg o is the
optical bandgap. Based on the onset (Ayser) Of UV-vis absorption spectrum of Cgo-PyP (~723 nm,
see Fig. 2b), E, op is estimated to be ~ 1.72 eV, according to the equation: E, op = 1240/ Agnser.?
Therefore, the HOMO energy levels of Cgy-PyP was estimated to be -5.61 eV. The data of PCBM
and Cgo-Py are quoted from Ref. S2.
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S4. TGA analysis of Cg)-PyP.
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Figure S4. TGA curve (solid line) and differential thermo-gravimetric (DTG) curve
(dashed line) of Cgp-PyP.

SS. UV-vis spectra of the MAPDI; perovskite with varying Cg-PyP concentration.
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Figure S5. UV-vis spectra of the MAPDI; perovskite with varying Cgo-PyP

concentration.

S6. PCE histograms of the control and 0.13 wt% devices.
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S7. Photovoltaic parameters box plots of devices with varying Cg-PyP concentration.
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Figure S6. PCE histograms of the control and 0.13 wt% devices.
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Figure S7. Box plots of V. (a), Jy (b), FF (c) and PCE (d) for PSC devices with varying Cgo-
PyP concentration.

S8. Hysteresis characterization of devices with and without 0.13 wt% Cg,-PyP.

Table S2. Photovoltaic parameters of the devices in different scan directions with 0.1 V/s scan

rate.
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. Scan Jee 0 0 Hysteresis
Device direction Voc (V) (mA/cm?) FE (%) PCE (%) Factor® (%)
reverse 1.082 21.01 73.65 16.74
0% 20.3%
° forward 1.038 19.87 64.67 13.35 ’
reverse 1.092 22.25 77.26 18.77
0.13 wt% 0.53%
W T forward 1.088 2246 76.44 18.67 °

aHysteresis Factor = [PCE (reverse) — PCE (forward)]/PCE (reverse)
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Figure S8. J-V curves of the control (a) and 0.13 wt% (b) devices with different scan rates.
The measurements were carried out under illumination of an AM 1.5 solar simulator (100
mWecm™?) in air.

Table S3. Photovoltaic parameters of the control and 0.13 wt% PSC devices with different
scan rates.

Device Scan Rate Voe(V)  Je (mA/em?)  FF (%)  PCE (%) Rs(Qescm?) Ry (Qecm?)
0.01V/s 1.031 20.40 70.20 14.77 13.43 1556.63
Control 0.1V/s 1.082 21.01 73.65 16.74 5.06 1170.35
1V/s 1.084 21.60 72.50 16.98 5.43 1208.30
0.01V/s 1.087 21.10 77.65 17.81 4.68 7201.70
0.13 wt% 0.1V/s 1.092 22.25 77.26 18.77 441 3584.64
1V/s 1.093 22.50 77.50 19.05 4.46 3991.21

S9. Histograms of grain size distributions of the MAPbI; perovskite film with

varying Cg)-PyP concentration.
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Figure S9. Histograms of grain size distributions of the MAPbI; perovskite film with
varying Cgo-PyP concentration.

S10. XPS profile of I 3d of the CH;NH;PbI; perovskite films without and with 1.0
wt% Cgo-PyP doping.
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Figure S10. I 3d XPS spectra of the CH3;NH;Pbl; perovskite films without and with
1.0 wt% Cgo-PyP doping.

S11. Analysis of time-resolved photoluminescence (TRPL) spectra of the
perovskite films with or without Cg-PyP.

The excitation source was a 543 nm picosecond laser pulse which was filtered from a
super continuum generation. The TRPL spectrum can be fitted by a single-exponential
decay function as shown in equation (S1):13-3]

f(t):A-exp(_Tt)+B

(SD)

Where A, t and B are the decay amplitude, the decay lifetime, and a constant for the

baseline offset, respectively. The pristine MAPbI; perovskite film shows a lifetime of
9



T = 39.41 ns, which is similar to those reported values for perovskite film fabricated
under similar conditions. After the addition of Cg-PyP, the t value dramatically

increases to 8.82.

S12. Fitted EIS data for Control and 0.13 wt% devices.

From the Nyquist plot (Figure 5f), the impedance spectra were fitted with one R-CPE
arcs, which a resistor Ry (series resistance) and parallel with an R-CPE elements. Ry is
determined by the starting point at the real part of the Nyquist plot. The R (charge
transfer resistance) is related to the charge transfer dynamics of devices, CPE is the

non-ideal chemical capacitances.

Table S4. Fitted EIS data for Control and 0.13 wt% devices.

Device Rs (Q-cm?) Ret (Q-cm?) CPE-T (F/cm®) CPE-P
Control 2.802 32.45 3.12E-07 0.993
0.13wt% 1.385 23.71 3.24E-07 0.989

S13. J-V curves and the stabilized photocurrent densities and power outputs

measured at the maximum power.
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Figure S11. J-V curves (a-b) and the stabilized photocurrent densities and power
outputs (c-d) measured at the maximum power points (labelled in curves a-b) of the
control and 0.13 wt% devices. For J-V curve measurements, the scanning direction is

from open-circuit voltage to short circuit (reverse) and the measurements were carried
out with 0.1 V/s scan rate.

Table S5. Photovoltaic parameters of the Control and 0.13 wt% devices

. 2 Maximum power point  Stabilized J Stabilized PCE
2 0 0,
Device Voc (V) Jse (mA/cm”) FF (%) PCE (%) ) (mA/em?) (%)
Control 1.079 21.03 75.14 17.05 0.892 17.50 15.61
0.13wt%  1.098 2247 78.84 19.45 0.913 20.40 18.63

S14. Ambient stabilities of the control and Cg-PyP doped perovskite films.
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Figure S12. XRD patterns of the control and 0.13 wt% perovskite films before and
after ambient storage for 30 days.

Figure S13. Surface topographic SEM of the MAPDI; perovskite film with varying Cg-
Pyridine concentration after storage for 24h at 80% humidity. (a) Pristine film without
Cs0-PyP, (b) with 0.13 wt% Cgo-PyP, and (c) with 1 wt% Cg-PyP.
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