Electronic Supplemental Information for

Pyridine-functionalized Fullerene Additive Enabling Coordination

Interactions with CH₃NH₃PbI₃ Perovskite towards Highly Efficient

Bulk Heterojunction Solar Cells

Jieming Zhen^{#a}, Weiran Zhou^{#a}, Muqing Chen^{*#a}, Bairu Li^a, Lingbo Jia^a, Mingtai Wang^b, and Shangfeng Yang^{*a}

^a Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory

of Materials for Energy Conversion, Department of Materials Science and

Engineering, Synergetic Innovation Center of Quantum Information & Quantum

Physics, University of Science and Technology of China, Hefei 230026, China.

E-mail: mqchen@ustc.edu.cn (M. C.); sfyang@ustc.edu.cn (S.Y.)

^b Institute of Applied Technology, Hefei Institutes of Physical Science,

Chinese Academy of Sciences, Hefei 230088, China

[#] These authors contributed equally to this work.

Contents

- S1. ¹H NMR and ¹³C NMR spectrum of C₆₀-PyP.
- S2. Mass spectrum of C₆₀-PyP.
- **S3.** Estimation of the energy levels of C₆₀-PyP.
- S4. TGA analysis of C₆₀-PyP.

S5. UV-vis spectra of the MAPbI₃ perovskite with varying C₆₀-PyP concentration.

S6. PCE histograms of the control and 0.13 wt% devices.

S7. Photovoltaic parameters box plots of devices with varying C₆₀-PyP concentration.

S8. Hysteresis characterization of devices with and without 0.13 wt% C₆₀-PyP.

S9. Histograms of grain size distributions of the MAPbI₃ perovskite film with varying C_{60} -PyP concentration.

S10. XPS profile of I 3d of the CH₃NH₃PbI₃ perovskite films without and with 1.0 wt% C₆₀-PyP doping

S11. Analysis of time-resolved photoluminescence (TRPL) spectra of the perovskite films with or without C₆₀-PyP.

S12. Fitted EIS data for Control and 0.13 wt% devices.

S13. J-V curves and the stabilized photocurrent densities and power outputs measured at the maximum power.

S14. Ambient stabilities of the control and C₆₀-PyP doped perovskite films.

S1. ¹H NMR and ¹³C NMR spectrum of C_{60} -PyP.

Figure S1. ¹H NMR spectrum of C_{60} -PyP in CS_2/d -acetone solution.

Figure S2. ¹³C NMR spectrum of C_{60} -PyP in CS_2/d -acetone solution.

S2. Mass spectrum of C₆₀-PyP.

Figure S3. MALDI-TOF Mass spectra of C₆₀-PyP.

S3. Estimation of the energy levels of C₆₀-PyP.

Table S	1. Elect	rochemica	l data o	f C ₆₀ -Py]	P and	I PCBN	Λ
---------	----------	-----------	----------	------------------------	-------	--------	---

	λ_{onset}^{a} (nm)	E _{g,opt} ^b (eV)	E _{red, onset} ^c (eV)	E _{LUMO} ^d (eV)	E _{HOMO} ^e (eV)
C ₆₀ -PyP	723	1.72	-0.94	-3.89	-5.61
C ₆₀ -MPy	724	1.71	-1.00	-3.80	-5.51
C ₆₀ -Bpy	724	1.71	-0.99	-3.81	-5.52
C ₆₀ -HPy	724	1.71	-0.97	-3.83	-5.54
PCBM	725	1.71	-0.98	-3.82	-5.53

^a Attained from UV-vis spectrum; ^b $E_{g, opt}=1240/\lambda_{onset}$; ^c Referred to the half wave potential of ferrocene; ^d $E_{LUMO}=-e(E_{red, onset}+4.8 \text{ V})$; ^e $E_{HOMO}=E_{LUMO}-E_{g, opt}$

The structure of PCBM and C₆₀-Py.

The energy levels of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) of the fullerene derivatives were estimated by a cyclic voltammetry study in combination with UV-Vis absorption spectroscopy. Cyclic voltammetry study was performed in *o*-dichlorobenzene with a CHI 630D potentiostat (CHI Instrument, U.S.A.) at room temperature. The supporting electrolyte was tetrabutylammonium perchlorate (TBPA, electrochemical grade, Fluka). A standard three-electrode arrangement of a platinum (Pt) wire as counter electrode, a platinum coil as working electrode, and a saturated calomel electrode as a pseudo-reference electrode was used. In a comparison experiment, ferrocene (Fc) was added as the internal standard and all potentials are referred to the Fc⁺/Fc couple.

The onset reduction potentials ($E_{red, onset}$) of C₆₀-PyP, C₆₀-BPy was estimated to be -0.94 V vs Fc⁺/Fc. Thus, the LUMO energy levels of C₆₀-PyP was calculated by E_{LUMO} = -e($E_{red, onset}$ + 4.8). The HOMO energy level of C₆₀-PyP was calculated by E_{HOMO} = $E_{g, opt}$ - E_{LUMO} ,¹ where $E_{g, opt}$ is the optical bandgap. Based on the onset (λ_{onset}) of UV-vis absorption spectrum of C₆₀-PyP (~723 nm, see Fig. 2b), $E_{g, opt}$ is estimated to be ~ 1.72 eV, according to the equation: $E_{g, opt}$ = 1240/ λ_{onset} .² Therefore, the HOMO energy levels of C₆₀-PyP was estimated to be -5.61 eV. The data of PCBM and C₆₀-Py are quoted from Ref. S2.

S4. TGA analysis of C₆₀-PyP.

Figure S4. TGA curve (solid line) and differential thermo-gravimetric (DTG) curve (dashed line) of C₆₀-PyP.

S5. UV-vis spectra of the MAPbI₃ perovskite with varying C₆₀-PyP concentration.

Figure S5. UV-vis spectra of the MAPbI₃ perovskite with varying C₆₀-PyP concentration.

S6. PCE histograms of the control and 0.13 wt% devices.

Figure S6. PCE histograms of the control and 0.13 wt% devices.

Figure S7. Box plots of V_{oc} (a), J_{sc} (b), FF (c) and PCE (d) for PSC devices with varying C₆₀-PyP concentration.

S8. Hysteresis characterization of devices with and without 0.13 wt% C₆₀-PyP.

Table S2. Photovoltaic parameters of the devices in different scan directions with 0.1 V/s scan rate.

Device	Scan direction	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA/cm ²)	FF (%)	PCE (%)	Hysteresis Factor ^a (%)
0% -	reverse	1.082	21.01	73.65	16.74	20.204
	forward	1.038	19.87	64.67	13.35	20.5%
0.13 wt% -	reverse	1.092	22.25	77.26	18.77	0.520/
	forward	1.088	22.46	76.44	18.67	0.3370

^a Hysteresis Factor = [PCE (reverse) – PCE (forward)]/PCE (reverse)

Figure S8. J-V curves of the control (a) and 0.13 wt% (b) devices with different scan rates. The measurements were carried out under illumination of an AM 1.5 solar simulator (100 mW•cm⁻²) in air.

Table S3. Photovoltaic parameters of the control and 0.13 wt% PSC devices with different scan rates.

Device	Scan Rate	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA/cm ²)	FF (%)	PCE (%)	$R_s(\Omega \cdot \mathrm{cm}^2)$	$R_{sh}(\Omega \cdot \mathrm{cm}^2)$
	0.01V/s	1.031	20.40	70.20	14.77	13.43	1556.63
Control	0.1V/s	1.082	21.01	73.65	16.74	5.06	1170.35
	1V/s	1.084	21.60	72.50	16.98	5.43	1208.30
	0.01V/s	1.087	21.10	77.65	17.81	4.68	7201.70
0.13 wt%	0.1V/s	1.092	22.25	77.26	18.77	4.41	3584.64
	1V/s	1.093	22.50	77.50	19.05	4.46	3991.21

S9.	Histograms	of g	grain	size	distributions	of th	e MAPbI ₃	perovskite	film	with
var	ying C ₆₀ -PyP	' cor	ncentr	atio	n.					

Figure S9. Histograms of grain size distributions of the MAPbI₃ perovskite film with varying C_{60} -PyP concentration.

S10. XPS profile of I 3d of the CH₃NH₃PbI₃ perovskite films without and with 1.0 wt% C₆₀-PyP doping.

Figure S10. I 3d XPS spectra of the CH₃NH₃PbI₃ perovskite films without and with 1.0 wt% C₆₀-PyP doping.

S11. Analysis of time-resolved photoluminescence (TRPL) spectra of the perovskite films with or without C_{60} -PyP.

The excitation source was a 543 nm picosecond laser pulse which was filtered from a super continuum generation. The TRPL spectrum can be fitted by a single-exponential decay function as shown in equation (S1):^[3-5]

$$f(t) = A \cdot exp\left(\frac{-t}{\tau}\right) + B$$
 (S1)

Where A, τ and B are the decay amplitude, the decay lifetime, and a constant for the baseline offset, respectively. The pristine MAPbI₃ perovskite film shows a lifetime of

 $\tau = 39.41$ ns, which is similar to those reported values for perovskite film fabricated under similar conditions. After the addition of C₆₀-PyP, the τ value dramatically increases to 8.82.

S12. Fitted EIS data for Control and 0.13 wt% devices.

From the Nyquist plot (Figure 5f), the impedance spectra were fitted with one R-CPE arcs, which a resistor R_s (series resistance) and parallel with an R-CPE elements. R_s is determined by the starting point at the real part of the Nyquist plot. The R_{ct} (charge transfer resistance) is related to the charge transfer dynamics of devices, CPE is the non-ideal chemical capacitances.

Device	Rs ($\Omega \cdot cm^2$)	Rct ($\Omega \cdot cm^2$)	CPE-T (F/cm ²)	CPE-P
Control	2.802	32.45	3.12E-07	0.993
0.13wt%	1.385	23.71	3.24E-07	0.989

Table S4. Fitted EIS data for Control and 0.13 wt% devices.

S13. J-V curves and the stabilized photocurrent densities and power outputs measured at the maximum power.

Figure S11. J-V curves (a-b) and the stabilized photocurrent densities and power outputs (c-d) measured at the maximum power points (labelled in curves a-b) of the control and 0.13 wt% devices. For J-V curve measurements, the scanning direction is from open-circuit voltage to short circuit (reverse) and the measurements were carried out with 0.1 V/s scan rate.

Table S5. Photovoltaic parameters of the Control and 0.13 wt% devices

Device	$V_{\text{oc}}\left(V\right)$	J _{sc} (mA/cm ²)	FF (%)	PCE (%)	Maximum power point (V)	Stabilized J (mA/cm ²)	Stabilized PCE (%)
Control	1.079	21.03	75.14	17.05	0.892	17.50	15.61
0.13 wt%	1.098	22.47	78.84	19.45	0.913	20.40	18.63

S14. Ambient stabilities of the control and C₆₀-PyP doped perovskite films.

Figure S12. XRD patterns of the control and 0.13 wt% perovskite films before and after ambient storage for 30 days.

Figure S13. Surface topographic SEM of the MAPbI₃ perovskite film with varying C_{60} -Pyridine concentration after storage for 24h at 80% humidity. (a) Pristine film without C_{60} -PyP, (b) with 0.13 wt% C_{60} -PyP, and (c) with 1 wt% C_{60} -PyP.

Reference:

- H. Wang, W. Zhang, C. Xu, X. Bi, B. Chen and S. Yang, ACS Appl. Mater. Inter., 2013, 5, 26-34.
- (2) B. Li, J. Zhen, Y. Wan, X. Lei, Q. Liu, Y. Liu, L. Jia, X. Wu, H. Zeng, W. Zhang, G. W. Wang, M. Chen and S. Yang, *ACS Appl. Mater Interfaces*, 2018, 10, 32471-32482.
- (3) Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan and J. Huang, *Adv. Mater.*, 2017, 29, 1604545.

- (4) J. W. Jung, C.-C. Chueh and A. K.-Y. Jen, Adv. Energy Mater., 2015, 5, 1500486.
- (5) P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin and A. K.-Y. Jen, *Adv. Mater.*, 2014, 26, 3748-3754.