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S1 Materials and Methods  

S1-1 Zeolite structures 
IZA (21) and PCOD (22, 23) crystal structures for zeolites were used to compute methane 

adsorption properties. In our work, a reduced set consisting of just the orthorhombic unit cell 
structures were used. 
 
S1-2 Monte Carlo simulation 

Classical force-field based molecular simulations using the Monte Carlo (MC) algorithm 
were performed. The Henry coefficient (KH) and the heat of adsorption (Qst) of methane were 
computed using the Widom insertion Monte Carlo moves. For the unitless KH values, we just 
took the average of the Boltzmann weighted sums from random samples.  In addition, the 
void fraction was computed by counting the percentage of the random insertion moves within 
the zeolite unit cells occupied that were deemed to be low energy (where low energy was 
defined to be below 15kBT (24). Details behind energy-based void fraction algorithm can be 
found elsewhere (S1). Adsorption isotherms were obtained using grand canonical Monte Carlo 
(GCMC) method. To accelerate the molecular simulations, a high-throughput code using 
graphics processing unit (GPU) was utilized (24, S2). 

To compute the adsorption properties such as Henry coefficients, heats of adsorption, and 
adsorption isotherms for a large number of zeolites, both the in-house GPU-based code and the 
CPU code has been used. In this work, we utilized GeForce GTX TITAN Z and GeForce GTX 
780. To accelerate computations further, energy grid with a spacing of 0.15 Å was generated 
first. The interaction energies between gas molecule and framework atoms were calculated 
using a 12-6 Lennard-Jones (LJ) potential model (eq. 1) with a cut-off distance of 12 Å. 
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where ULJ is the potential energy, ε is the well-depth, σ is the equilibrium distance, and r is the 
distance between interacting particles. The LJ force-field parameters for methane and zeolites 
were taken from Garcia-Perez et al. (S3) To compute interaction energies between dissimilar 
atoms, the Lorentz-Berthelot mixing rules was used.  
 
S1-3 Architecture of discriminator and generator 

The architectures of discriminator and generator of ESGAN are based on DCGAN 
(S4). The size of all kernels used in 3D transposed convolution and 3D convolution is 5×5×5. 
All weights are initialized with the zero-centered normal distribution with the standard 
deviation of 0.02. The Adam optimizer (S5) is used with a learning rate of 0.0001 and 𝛽𝛽1 =
0.5  for both generator and discriminator. The dropout rate is 0.5 and multivariate normal 
distribution N(0, I) is chosen as a noise distribution Pz of the size of 1024 where I is the identity 
matrix. The mini-batch size is 32. ESGAN is implemented by Tensorflow (S6) and we utilized 
GeForce GTX 1080 Ti to train our ANN model. It takes about a week to train a model on a 
single GPU. .  In this work,. 



 
Fig. S1. Illustration of the ESGAN architecture. (a) Generator, (b) Discriminator. 

 

 
Fig. S2. (a) LLattice,G and LLattice,D over training steps, (b) distribution of unit cell volume of real 
and generated energy shape. 

Over training steps, the orders of LLattice,G and LLattice,D are similar to each other. And the 
average of the absolute length difference between the lattice constant and inferred lattice 
constant is also similar to each other. This means that the relationship of the generated energy 



grid and lattice constant is similar to that of the real energy grid and lattice constant. Also, the 
unit cell distribution of generated energy shapes is in good agreement with that of real energy 
shapes. Furthermore, visually, we do not observe any “squeezed” energy shapes, so the energy 
grid and lattice constant are well matched. 

 

The size of C is three because we treat the orthorhombic crystals (no angle variables) 
and the size of X is 32×32×32. For a typical molecular simulation, this is a very small energy 
size and we used this reduced size for memory purposes in our ANN model. Therefore, we 
validate the choice of 32×32×32 grid size given that this is in fractional dimensions and the 
actual grid size in Cartesian dimensions vary from one cell to another. We tested the effect of 
grid size on the IZA set by looking at the computed Henry coefficient and the void fraction. 
The results of the test simulations are shown in Fig. S3.  
 

 
Fig. S3. Adsorption property comparison between different grid sizes. (a) Henry coefficient (b) 
void fraction. The property values of x-axis are obtained from the energy grid with 0.15 
Angstroms on Cartesian coordinate and the values of y-axis are obtained from the energy grid 
with size 1/32 on fractional coordinate. The results indicate that regardless of the choice in the 
grid size, the properties are more or less the same and thus justifying our usage of the uniform 
grid size in the fractional space. 

 

S1-4 Data pre-processing 

Our ANN dataset consists of tuple data with lattice constant and energy grid information. 
The values of interaction energy between methane and zeolites are saved in the Kelvin unit. 
The interaction energy value goes to infinite when the methane molecule overlaps with the 
zeolite framework. To prevent infinite values in the energy grid, we cut off the energy value 
higher than 5000 K, which is approximately the energy value of the inaccessible region at the 
moderate temperature. The energy range is set to [−3500, 5000] in Kelvin unit because 99.92% 
of materials are within that range. The cell lengths are also normalized within the range [0, 100] 
in Angstrom unit, which is sufficiently large for all the zeolites except one. 



To make the value of inaccessible region go to zero, we applied additional operation given 
as 

 1x x← − , (8) 
 

to each energy value after the min-max normalization. So afterward, the value of 5000 K 
becomes zero and the value of −3500 K becomes one. 

Because the crystals have no bias for translation and rotation in space, we applied two 
kinds of data augmentations to each energy shape: translational augmentation and rotational 
augmentation. Image descriptions for these augmentations are shown in Fig. S4 

 

 
Fig. S4. Image description of two types of energy grid augmentation. (a) translational 
augmentation, (b) rotational augmentation. Because of the translational and rotational 
invariance of crystals, all images in the figure are identical structures. 

 

Because the size of the grid is 32 in all directions, the total number of augmentation by 
translation for each energy grid is 323. Also, the total number of augmentation by rotation is 
three because the only three permutations of the axis can be obtained by rotation. 

 



 
Fig. S5. Image description of the periodic padding.  The illustrated example is two-
dimensional, but we applied a three-dimensional version of periodic padding to our neural 
network. 

 

S1-5 Effect of free energy matching 

To show the effect of free energy matching, we used the energy range [−3500, 5000] 
with free energy matching up to 600k steps and obtained the pre-trained parameters. From there, 
we changed the energy range to [−5000, 5000] and compared the results with and without free 
energy matching. Fig. S6 shows the results for free energy matching. 



 
Fig. S6. (a) Property distributions of the model of minimum JSD with free energy matching. 
(b) Property distributions of the model of minimum JSD without free energy matching. (c) JSD 
over training step with and without free energy matching. The points on the JSD curve indicate 
the minimum. 

 

We found that JSD converges slowly and is highly oscillating without free energy matching 
and the distribution is less likely to match with that of free energy matching and highly sensitive 
to the range of energy normalization. 

  



S2 Tables/Results  

 

S2-1 All input zeolites 

 

Fig. S7. Top performing energy shapes and the histogram of the value of energy grid. (a) 
generated energy shapes, (b) zeolite energy shapes, (c) energy histograms of each generated 
energy grid (the order of histogram is same as (a)), (d) energy histogram of each energy grid 
of zeolites (the order of histogram is same as (b)). The inset value in each subplot in (c) and (d) 
is the heat of adsorption in kJ/mol unit. 

  



Table. S1. Top 5 Properties values of real and generated energy shapes (All zeolites)  

 

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 400.02 0.55 0.53 32.22 29.29 

2 264.63 331.85 0.51 0.53 31.89 28.57 

3 258.14 211.15 0.48 0.52 31.47 28.47 

4 250.54 202.51 0.47 0.50 31.21 28.37 

5 245.07 186.55 0.47 0.48 30.99 28.01 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar  

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 156.74 159.41 232.76 224.82 143.90 133.56 

2 144.32 155.42 231.68 220.80 115.02 130.82 

3 143.49 149.55 207.14 217.17 113.50 121.07 

4 142.93 142.49 204.16 215.27 112.10 120.96 

5 141.16 141.79 202.39 206.11 107.31 120.79 

 

  



S2-2 Rest input zeolites 

 

 

Fig. S8. Property distributions of dataset 1 (WC under 50 cm3/cm3) 

 

Fig. S9. JSD convergence of dataset 1 (WC under 50 cm3/cm3)  



Table. S2. Top 5 Properties values of real and generated energy shapes (dataset 1, WC under 
50 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 262.12 0.18 0.25 32.22 29.49 

2 264.63 189.66 0.17 0.25 31.89 28.63 

3 250.54 188.19 0.17 0.24 31.47 28.54 

4 245.07 186.12 0.17 0.23 31.21 28.46 

5 226.46 186.06 0.17 0.22 30.98 27.97 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar 

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 50.00 88.88 161.34 193.70 115.02 157.59 

2 50.00 84.94 159.40 192.46 113.50 148.49 

3 50.00 83.27 145.07 184.28 104.54 133.28 

4 49.99 80.86 143.38 182.35 98.39 129.06 

5 49.99 79.85 142.40 181.91 95.68 128.61 

 

 

Fig. S10. Visualization of top performing energy shape (dataset 1, WC under 50 cm3/cm3). First 
row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S11. Property distributions of dataset 2 (WC under 60 cm3/cm3) 

 

Fig. S12. JSD convergence of dataset 2 (WC under 60 cm3/cm3) 

  



Table. S3. Top 5 Properties values of real and generated energy shapes (dataset 2, WC under 
60 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 166.38 0.33 0.27 32.22 27.49 

2 264.63 149.93 0.29 0.25 31.89 27.15 

3 250.54 147.02 0.24 0.25 31.47 27.14 

4 245.07 136.89 0.21 0.25 31.21 27.09 

5 226.46 133.50 0.21 0.24 30.98 26.99 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar  

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 60.00 101.72 166.86 185.88 115.02 126.76 

2 60.00 101.30 166.32 180.41 113.50 125.92 

3 60.00 99.84 163.47 176.95 107.31 123.21 

4 60.00 98.72 163.38 176.52 107.11 110.29 

5 60.00 93.71 162.65 171.48 107.10 108.11 

 

 

Fig. S13. Visualization of top performing energy shape (dataset 2, WC under 60 cm3/cm3). First 
row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S14. Property distributions of dataset 3 (WC under 70 cm3/cm3) 

 

Fig. S15. JSD convergence of dataset 3 (WC under 70 cm3/cm3) 

 

  



Table. S4. Top 5 Properties values of real and generated energy shapes (dataset 3, WC under 
70 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 266.37 0.33 0.38 32.22 28.44 

2 264.63 245.61 0.29 0.32 31.89 27.94 

3 258.14 199.70 0.24 0.32 31.47 27.89 

4 250.54 191.48 0.24 0.31 31.21 27.74 

5 245.07 183.09 0.23 0.30 30.98 27.70 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 70.00 117.53 167.92 208.21 115.02 142.26 

2 70.00 117.25 167.01 207.38 113.50 129.65 

3 70.00 115.10 166.86 202.66 107.31 123.76 

4 69.99 114.95 166.32 201.20 107.11 122.29 

5 69.99 112.66 165.78 200.66 107.10 122.25 

 

 

Fig. S16. Visualization of top performing energy shape (dataset 3, WC under 70 cm3/cm3). First 
row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S17. Property distributions of dataset 4 (WC under 80 cm3/cm3) 

 

Fig. S18. JSD convergence of dataset 4 (WC under 80 cm3/cm3) 

  



Table. S5. Top 5 Properties values of real and generated energy shapes (dataset 4, WC under 
80 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 483.94 0.34 0.38 32.22 28.17 

2 264.63 266.35 0.34 0.37 31.89 27.98 

3 258.14 253.09 0.33 0.34 31.47 27.96 

4 250.54 250.45 0.33 0.33 31.21 27.66 

5 245.07 238.34 0.29 0.33 30.99 27.64 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 80.00 124.48 167.92 177.95 115.02 128.44 

2 79.99 121.40 167.01 177.71 113.50 121.84 

3 79.99 111.67 166.93 175.29 107.31 121.79 

4 79.99 111.37 166.86 174.90 107.11 118.05 

5 79.98 110.77 166.81 173.92 107.10 117.50 

 

 

Fig. S19. Visualization of top performing energy shape (dataset 4, WC under 80 cm3/cm3). First 
row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S20. Property distributions of dataset 5 (WC under 90 cm3/cm3) 

 

Fig. S21. JSD convergence of dataset 5 (WC under 90 cm3/cm3) 

  



Table. S6. Top 5 Properties values of real and generated energy shapes (dataset 5, WC under 
90 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 454.23 0.55 0.37 32.22 28.82 

2 264.63 211.68 0.47 0.36 31.89 28.65 

3 258.14 139.08 0.46 0.35 31.47 28.55 

4 250.54 129.67 0.43 0.34 31.21 28.43 

5 245.07 126.73 0.42 0.34 30.99 28.17 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 90.00 130.02 231.68 216.01 143.90 130.59 

2 90.00 128.08 167.92 201.16 115.02 129.74 

3 89.99 126.77 167.01 199.24 113.50 120.59 

4 89.98 124.59 166.93 191.91 107.31 119.90 

5 89.97 122.51 166.86 190.43 107.11 119.23 

 

 

Fig. S22. Visualization of top performing energy shape (dataset 5, WC under 90 cm3/cm3). First 
row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S23. Property distributions of dataset 6 (WC under 100 cm3/cm3) 

 

Fig. S24. JSD convergence of dataset 6 (WC under 100 cm3/cm3) 

  



Table. S7. Top 5 Properties values of real and generated energy shapes (dataset 6, WC under 
100 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 239.14 0.55 0.42 32.22 27.42 

2 264.63 180.74 0.47 0.41 31.89 27.41 

3 258.14 178.16 0.47 0.40 31.47 26.92 

4 250.54 169.82 0.46 0.40 31.21 26.85 

5 245.07 160.96 0.46 0.40 30.99 26.66 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 99.99 149.58 231.68 209.56 143.90 123.24 

2 99.96 139.96 177.13 208.35 115.02 121.50 

3 99.96 138.78 170.84 204.82 113.50 118.79 

4 99.95 134.59 167.92 201.47 107.31 116.36 

5 99.95 134.23 167.47 199.99 107.11 114.81 

 

 

Fig. S25. Visualization of top performing energy shape (dataset 6, WC under 100 cm3/cm3). 
First row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S26. Property distributions of dataset 7 (WC under 110 cm3/cm3) 

 

Fig. S27. JSD convergence of dataset 7 (WC under 110 cm3/cm3) 

 

  



Table. S8. Top 5 Properties values of real and generated energy shapes (dataset 7, WC under 
110 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 405.44 0.55 0.53 32.22 27.44 

2 264.63 244.01 0.51 0.47 31.89 27.17 

3 258.14 240.65 0.48 0.47 31.47 27.03 

4 250.54 183.82 0.47 0.46 31.21 27.00 

5 245.07 169.68 0.47 0.46 30.99 26.98 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar  

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 109.99 160.35 231.68 211.16 143.90 133.37 

2 109.98 149.98 184.47 209.95 115.02 132.20 

3 109.97 144.34 178.98 209.30 113.50 132.00 

4 109.86 141.09 178.64 203.97 107.31 128.86 

5 109.63 137.59 178.30 202.95 107.11 127.90 

 

 

Fig. S28. Visualization of top performing energy shape (dataset 7, WC under 110 cm3/cm3). 
First row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S29. Property distributions of dataset 8 (WC under 120 cm3/cm3) 

 

Fig. S30. JSD convergence of dataset 8 (WC under 120 cm3/cm3) 

  



Table. S9. Top 5 Properties values of real and generated energy shapes (dataset 8, WC under 
120 cm3/cm3)  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 299.28 0.55 0.49 32.22 28.57 

2 264.63 264.45 0.51 0.48 31.89 28.41 

3 258.14 227.51 0.48 0.48 31.47 28.06 

4 250.54 201.54 0.47 0.46 31.21 27.98 

5 245.07 191.08 0.47 0.46 30.99 27.94 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar 

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 119.97 168.70 231.68 224.05 143.90 152.91 

2 119.96 163.73 184.47 218.67 115.02 122.04 

3 119.74 151.96 182.66 211.88 113.50 120.50 

4 119.59 151.87 182.62 208.13 107.31 116.86 

5 119.50 149.42 178.98 207.91 107.11 114.91 

 

 

Fig. S31. Visualization of top performing energy shape (dataset 8, WC under 120 cm3/cm3). 
First row is real energy shapes and the second row is generated energy shapes.  

  



 

Fig. S32. Property distributions of dataset 9 (WC under 130 cm3/cm3) 

 

Fig. S33. JSD convergence of dataset 9 (WC under 130 cm3/cm3) 

  



Table. S10. Top 5 Properties values of real and generated energy shapes (dataset 9, WC under 
130 cm3/cm3)  

  

 Unitless KH Void Fraction Heat of Adsorption 
(kJ/mol) 

Rank Real Generated Real Generated Real Generated 

1 398.00 274.67 0.55 0.47 32.22 29.89 

2 264.63 197.84 0.51 0.47 31.89 28.54 

3 258.14 177.42 0.48 0.45 31.47 27.89 

4 250.54 172.44 0.47 0.43 31.21 27.45 

5 245.07 171.87 0.47 0.43 30.99 27.16 

 
Working Capacity 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 65bar 

(cm3 (STP)/ cm3) 

CH4 Uptake @ 5.8bar 

(cm3 (STP)/ cm3) 

Rank Real Generated Real Generated Real Generated 

1 129.99 154.47 232.76 204.00 143.90 131.05 

2 129.69 150.68 231.68 203.17 115.02 127.29 

3 129.13 147.03 202.03 202.80 113.50 120.87 

4 129.01 145.12 198.01 196.97 112.10 119.37 

5 128.99 143.21 192.21 196.24 107.31 119.31 

 

 

Fig. S34. Visualization of top performing energy shape (dataset 9, WC under 130 cm3/cm3). 
First row is real energy shapes and the second row is generated energy shapes.  



S2-3 Interpolation between Energy Shapes 

The interpolation between two energy shapes is performed to show that the generator 
does not simply learn the one-to-one mapping of noise to sample. In general, the interpolation 
between two samples is performed with linear interpolation in noise space. However, in this 
work, we use the trigonometric interpolation given by 

 

 1 2cos sinθ θ= ⋅ + ⋅z z z , (20) 
 

where z is interpolated noise, z1 is the noise source of an energy shape 1, z2 is the noise source 
of an energy shape 2 and θ is a value within [0, π/2]. We used this interpolation scheme due to 
the following reason. The generator function G learns the mapping z to X from Pz and PX 
respectively. Therefore, if the value of z is not from Pz, there is no guarantee that the generated 
sample is proper. In the case of interpolation, the linearly interpolated noise does not follow 
the noise distribution Pz because there is no guarantee that the linear interpolation between two 
samples from the same distribution follows the original distribution. For example, the 
distribution of the sum of two independent multivariate normal distribution N(μ1I, σ1

2 I) and 
N(μ1 I, σ1

2 I) is N((μ1 + μ2) I, (σ1
2

+ σ2
2) I) In our case, we use the standard normal distribution 

as noise. So if we use trigonometric interpolation given as above, the distribution of 
interpolated noise becomes N(0 + 0, (cos2θ + sin2θ) I), which is the same as standard normal 
distribution. Also, for that reason, we did not use optimization over z space for any purpose 
(e.g., finding the maximum of some property). Because the z obtained from the optimization 
can be far from the distribution Pz. This means that the obtained energy shapes from the noise 
z can be highly abnormally point because the z does not follow Pz. The interpolation result of 
randomly selected three energy shapes are shown in Fig. S35. 

 



 

Fig. S35. Interpolation result of three structures. (a) Visual representation of the interpolation, 
(b) The change of properties between structures. 

 

It was shown that the energy shape and the properties are changed continuously. It should be 
pointed out that the value of properties vary continuously, but the values are not monotonically 
changed nor lie in between the values of two energy shapes. 
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