A Novel Alkylsilyl-fused Copolymer-based Non-fullerene Solar Cells with over 12% Efficiency

Guodong Xu <sup>a,b</sup>, Lie Chen\*<sup>a,b</sup> Hui Lei <sup>a,b</sup>, Zhihui Liao <sup>a,b</sup>, Nan Yi <sup>a,b</sup>, Jinliang Liu <sup>a,b</sup>, Yiwang Chen\*<sup>a,b</sup>

<sup>a</sup>College of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

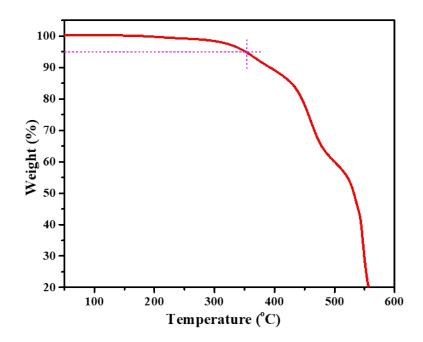
bJiangxi Provincial Key Laboratory of New Energy Chemistry/Institute of Polymers,
Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
Corresponding author. Tel.: +86 791 83968703; fax: +86 791 83969561. E-mail:
ywchen@ncu.edu.cn (Y. Chen), chenlie@ncu.edu.cn (L. Chen).

## **Supporting information**

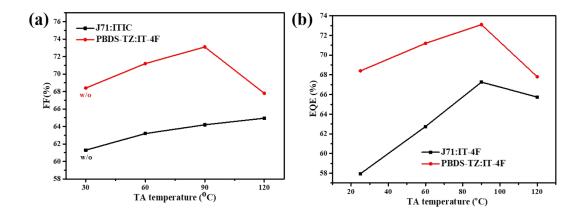
**Materials:** tetrakis(triphenylphosphine)palladium(0)(Pd(PPh<sub>3</sub>)<sub>4</sub>),and other materials were purchase from Alfa or Aldrich, Some solvents were distilled before use (tetrahydrofuran (THF) from sodium), IT-4F were purchased form Derthon. molybdenum oxide (MoO<sub>3</sub>) and Ag (99.998%) were purchased from Nano-C and Rieke Metals, Inc. Indium tin oxide (ITO) was purchased from Delta Technologies Limited.

## **Device Fabrication**

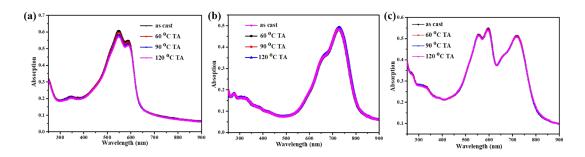
- (1)The inverted device structure was ITO/ZnO/PBDS-TZ:IT-4F/MoO<sub>3</sub>/Ag. A glass substrate with a pre-patterned ITO (sheet resistance=15  $\Omega$  sq<sup>-1</sup>) was ultrasonicated in acetone, detergent, deionized water and isopropanol in turn, and then modified by air plasma treatment for 1 min. After spin-coating ZnO with 4000rmp, 1 min. and baked on a hot plate at 205 °C for about 60 min. PTZ1-Si:IT-4F was dissolved in chlorobenzene with 0.25% (vol %)1,8-diiodoctane(DIO),(total concentration is 16 mg/mL) with 1000 rpm for 1 min for active materials. And then with various temperature TA treatment. Then the molybdenum trioxide (7 nm) and argentum cathode (90 nm) was successively thermal evaporation over interface layer under a high vacuum chamber (7×10<sup>-4</sup> Pa) to accomplish the device fabrication.
- (2) The conventional device structure was ITO/PEDOT:PSS/PBDS-TZ:IT-4F /PNDIO/Al. A glass substrate with a pre-patterned ITO (sheet resistance =15  $\Omega$  sq<sup>-1</sup>)


was first ultrasonicated in acetone, detergent, deionized water and isopropanol in turn, and then modified by air plasma treatment for 3 min. After filtration through a 0.45 μm filter, PEDOT:PSS (Bay PVPAI4083, Bayer AG) was spin-coated at 5000 rpm for 60 s to form a thickness of 30 nm thin layer on the cleaned ITO substrate, and baked on a hot plate at 140 °C for about 20 min. The PBDS-TZ:IT-4F (1:1 w/w) was dissolved in chlorobenzene with 0.25% (vol %)1,8-diiodoctane (DIO), mixed in solution with total concentration of 16 mg mL<sup>-1</sup>, spin-coated onto the interfacial layer at 1000 rpm for 1 min. The PNDIO solution (1 mg/mL) was spin-coated on the active layer at 3000 rmp for 60 s, then the aluminium (100 nm) cathode was thermal evaporation over interface layer under a high vacuum chamber (7×10<sup>-4</sup> Pa) to accomplish the device fabrication.

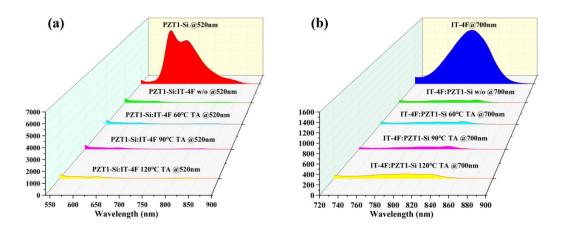
The effective device area of one cell was 0.04cm<sup>2</sup>. The I–V characterization of the devices were measured by a Keithley 2400 Source Meter under simulated solar light (100 mW/cm<sup>2</sup>, AM 1.5 G, Abet Solar Simulator Sun2000). Electron-only devices were fabricated similar to the PSCs with a structure of ITO/ZnO/PBDS-TZ:IT-4F / PDINO/Al. And the hole-only devices fabricated similar to the PSCs with a structure of ITO/PEDOT:PSS/ PBDS-TZ:IT-4F /MoO<sub>3</sub>/Al. The EQE values measuring system (Oriel Cornerstone 260 1/4 m monochromator equipped with Oriel 70613NS QTH lamp), the monochromatic light from a xenon lamp. A solar simulator was used as the light source, and the light intensity was monitored by using a standard Si solar cell. All characterization processes were conducted in the air.


CV measurements were carried out on a CHI660 potentiostat/galvanostat electrochemical work station at a scan rate of 20 mVs<sup>-1</sup>, with a platinum wire as counter electrode and a silver/silver chloride (Ag/AgCl) as reference electrode in a 0.1 mol L<sup>-1</sup> solution of tetrabutylammonium perchlorate (n-Bu<sub>4</sub>NClO<sub>4</sub>) in anhydrous and nitrogensaturated acetonitrile (CH<sub>3</sub>CN). A platinum plate coated on a thin film of the studied the two small molecule electrolyte was used as the work electrode. The HOMO and LUMO energy level were calculated by the empirical formula:

 $E_{HOMO}\!\!=\![E_{ox}\!\!+\!\!4.8\!\!-\!\!E_{Fc/Fc^+}]$  (eV J  $^{-1}$  ),  $E_{LUMO}\!\!-\!E_{HOMO}\!=\!\!E_{g}.$ 


where  $E_{Fc/Fc^+}$  is the redox potential of ferrocene/ferrocenium ( $E_{Fc/Fc^+}$ ) couple in the electrochemical measurement system, and the evergy level of  $E_{Fc/Fc^+}$  was taken as 4.8eV below vacuum. The  $E_{ox}$  is the analyte oxidation onset.




**Figure S1.** Thermogravimetric analysis (TGA) spectra of PBDS-TZ under nitrogen at a heating rate of  $10 \, ^{\circ}\text{C/min}$ .



**Figure S2.** (a) The fill factor (FF) of inverted OSCs device based on J71:ITIC and PBDS-TZ:IT-4F with various TA temperature. (b) The fill factor (FF) of inverted OSCs device based on J71:IT-4F and PBDS-TZ:IT-4F with various TA temperature.



**Figure S3**. Absorption spectra of films with various temperature thermal annealing treatment: (a) PBDS-TZ film. (b) IT-4F film. (c) PBDS-TZ:IT-4F blend film.



**Figure S4**. Photoluminescence spectra with various temperature of the a) PBDS-TZ:IT-4F blend film (excited at 520 nm); b) PBDS-TZ:IT-4F blend film (excited at 700 nm).



**Figure S6.** Photographs of water droplets on the surface of various film. a) PBDS-TZ film, b) PBDS-TZ:IT-4F blend film without thermal annealing treatment, c) PBDS-TZ :IT-4F blend film with 60 °C thermal annealing treatment.(d) PBDS-TZ :IT-4F blend film with 90 °C thermal annealing treatment. (e) PBDS-TZ:IT-4F blend film with 120 °C thermal annealing treatment.(f) IT-4F film.(g) PZT1-Si :IT-4F blend film without DIO.

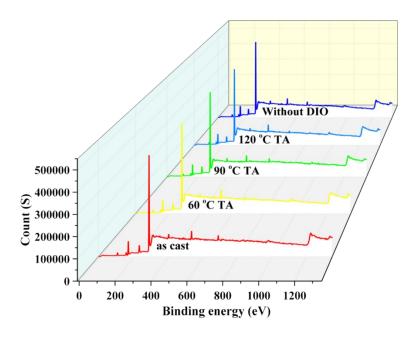
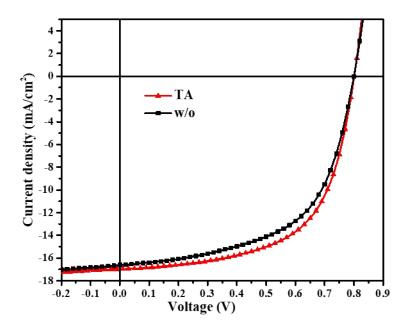




Figure S7. X-ray photoelectron spectroscopy (XPS) spectra of surface on blend films.



**Figure S8.** *J-V* curves of the PSCs devices ITO/PEDOT:PSS/PBDS-TZ:IT-4F /PDINO/Al without or with 90 °C TA treatment.

**Table S1.** *J-V* curves of the OSCs devices ITO/ZnO/PBDS-TZ:IT-4F/MoO<sub>3</sub>/Ag.

| DIO  | TA         | D/A   | $V_{ m oc}$       | $J_{ m sc}$           | FF         | PCE                                         |
|------|------------|-------|-------------------|-----------------------|------------|---------------------------------------------|
| (%)  | (°C) ratio |       | (V)               | (mA/cm <sup>2</sup> ) | (%)        | (%)                                         |
| _    | _          | 1:1   | 0.800±0.007       | 19.30±0.35            | 33.80±0.37 | 5.42 <sup>b</sup> (5.20 <sup>a</sup> ±0.25) |
| 0.5  |            | 1:1   | $0.787 \pm 0.002$ | 18.45±0.37            | 66.70±0.35 | 9.69 <sup>b</sup> (9.57 <sup>a</sup> ±0.23) |
| 0.5  | 60         | 1:1   | 0.781±0.004       | 19.10±0.42            | 68.62±0.31 | $10.24^{b}(9.97^{a}\pm0.37)$                |
| 0.5  | 90         | 1:1   | 0.773±0.003       | 20.17±0.46            | 69.60±0.35 | $10.85^{b}(10.7^{a}\pm0.25)$                |
| 0.5  | 120        | 1:1   | 0.778±0.004       | 19.20±0.32            | 67.30±0.34 | $10.10^{b}(9.93^{a}\pm0.21)$                |
| 0.25 | 90         | 1.5:1 | $0.734 \pm 0.003$ | 17.38±0.31            | 63.48±0.34 | 8.11 <sup>b</sup> (7.89 <sup>a</sup> ±0.27) |
| 0.25 | 90         | 1:1.5 | $0.764 \pm 0.003$ | 15.24±0.38            | 60.91±0.38 | 7.09 <sup>b</sup> (6.97 <sup>a</sup> ±0.25) |

<sup>&</sup>lt;sup>a</sup>The averages for photovoltaic parameters of each device are given in parentheses with mean variation obtained from 10 devices, and the  $\pm$  refer to the standard deviation. <sup>b</sup>Best device PCE.

**Table S2.** Information of hole and electron mobility of PBDS-TZ:IT-4F.

|          | $\mu_h  (cm^2 V^{\text{-}1} s^{\text{-}1})$ | $\mu_e(cm^2V^{\text{-}1}s^{\text{-}1})$ | $\mu_e/\mu_h$ |
|----------|---------------------------------------------|-----------------------------------------|---------------|
| Without  | 4.53×10 <sup>-4</sup>                       | 2.40×10 <sup>-4</sup>                   | 1.89          |
| 90 °C TA | 5.01×10 <sup>-4</sup>                       | 2.71×10 <sup>-4</sup>                   | 1.85          |

**Table S3.** Information of the top surface measured by Contact angle and X-ray photoelectron spectroscopy.

|                        | $\theta_{water}$ | Surface                    | Si   | F    | S    | С     | N    |
|------------------------|------------------|----------------------------|------|------|------|-------|------|
|                        | [0]              | energy $\gamma_{\text{s}}$ | [%]  | [%]  | [%]  | [%]   | [%]  |
|                        |                  | [mJ m <sup>-2</sup> ]      |      |      |      |       |      |
| PZTI-Si                | 110.11           | 17.03                      | _    | _    | _    | _     | _    |
| IT-4F                  | 101.50           | 19.93                      | _    |      | _    |       |      |
| blend film w/o         | 110.20           | 16.97                      | 3.66 | 1.26 | 6.84 | 82.10 | 2.73 |
| blend film 60 °C TA    | 109.94           | 17.70                      | 3.28 | 1.20 | 6.64 | 82.53 | 2.36 |
| blend film 90 °C TA    | 108.77           | 17.80                      | 3.31 | 1.24 | 6.67 | 82.67 | 3.14 |
| blend film 120 °C TA   | 109.80           | 17.21                      | 3.19 | 0.94 | 6.26 | 83.9  | 2.62 |
| blend film without DIO | 108.90           | 17.75                      | 3.16 | 1.25 | 6.80 | 82.20 | 2.77 |

**Table S4.** The atomic content of blend films with various etch times.

|            | Etch time | Si    | S    | С     | N    | О    | F    |
|------------|-----------|-------|------|-------|------|------|------|
|            | (s)       | (%)   | (%)  | (%)   | (%)  | (%)  | (%)  |
|            | 0         | 3.66  | 6.84 | 82.10 | 2.73 | 3.40 | 1.26 |
|            | 100       | 2.86  | 4.95 | 87.21 | 1.65 | 1.54 | 1.76 |
| Without TA | 200       | 2.77  | 4.82 | 87.30 | 1.63 | 1.68 | 1.77 |
|            | 300       | 2.79  | 4.90 | 87.15 | 1.72 | 1.66 | 1.76 |
|            | 400       | 2.77  | 4.98 | 87.09 | 1.65 | 1.81 | 1.70 |
|            | 0         | 3.31  | 6.67 | 82.27 | 3.14 | 3.38 | 1.24 |
|            | 100       | 2.284 | 4.90 | 86.84 | 1.70 | 2.57 | 1.71 |
| TA         | 200       | 2.68  | 4.89 | 85.60 | 1.94 | 3.18 | 1.70 |
|            | 300       | 2.72  | 4.99 | 85.29 | 1.89 | 3.39 | 1.71 |
|            | 400       | 2.66  | 5.08 | 84.64 | 2.41 | 3.38 | 1.83 |

**Table S5.** *J-V* curves of the PSCs devices ITO/PEDOT:PSS/PBDS-TZ:IT-4F /PDINO/Al without or with 90 °C TA treatment.

|          | $V_{\rm oc}\left({ m V}\right)$ | $J_{\rm sc}~({\rm mA/cm^2})$ | FF (%)    | PCE (%)                                     |
|----------|---------------------------------|------------------------------|-----------|---------------------------------------------|
| Without  | 0.802±0.003                     | 16.8±0.35                    | 59.0±0.43 | 8.00 <sup>b</sup> (7.83 <sup>a</sup> ±0.25) |
| 90 °C TA | $0.800 \pm 0.005$               | 17.1±0.42                    | 60.5±0.47 | 8.34 <sup>b</sup> (8.07 <sup>a</sup> ±0.32) |

<sup>&</sup>lt;sup>a</sup>The averages for photovoltaic parameters of each device are given in parentheses with mean variation obtained from 10 devices, and the  $\pm$  refer to the standard deviation. <sup>b</sup>Best device PCE.

**Table S6.** *J-V* curves of the PSCs devices  $ITO/ZnO/J71:IT-4F/MoO_3/Ag$  without or with TA treatment.

| TA treatment | $V_{\rm oc}\left[{ m V} ight]$ | $J_{\rm sc}~[{\rm mA~cm^{-2}}]$ | FF [%]           | PCE [%]                                     |
|--------------|--------------------------------|---------------------------------|------------------|---------------------------------------------|
| w/o          | $0.764\pm0.003$                | $18.69\pm0.35$                  | 56.98±0.45       | 8.23 <sup>b</sup> (8.09 <sup>a</sup> ±0.15) |
| 60 °C        | $0.759 \pm 0.003$              | $18.78 \pm 0.36$                | $62.74\pm0.35$   | $9.06^{b}(8.78^{a}\pm0.23)$                 |
| 90 °C        | $0.756 \pm 0.003$              | $18.24 \pm 0.33$                | $67.26 \pm 0.37$ | 9.38 b (9.18a±0.22)                         |
| 120 °C       | $0.734 \pm 0.003$              | $17.86 \pm 0.37$                | $65.74\pm0.42$   | 8.73 b (8.57a±0.17)                         |

<sup>&</sup>lt;sup>a</sup>The averages for photovoltaic parameters of each device are given in parentheses with mean variation obtained from 10 devices, and the  $\pm$  refer to the standard deviation. <sup>b</sup>Best device PCE.