Electronic Supplementary Information

Flame-retarding Nanoparticles as the Compatibilizers for Immiscible Polymer Blends: Simultaneously Enhanced Mechanical Performance and Flame Retardancy

Zhiang Fu, ^{a,b} Hengti Wang, ^a Xuewen Zhao, ^a Xuan Li, ^a Xiaoying Gu ^a and Yongjin Li*^a

^a College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 16 Xuelin Rd., Hangzhou, 310036, People's Republic of China E-mail: yongjin-li@hznu.edu.cn.

^b CAS Center for Excellent on TMRS Energy System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China

Formula for calculating the grafting ratio of PMMA with epoxy Formula S1 group on Boehmite nanorods surface Molecular parameter of PMMA-COOH and the surface modified Table S1 Boehmite nanorods The work of fracture of the PVDF/PLLA blends with the Boehmite Table S2 nanorods Table S3 The LOI of PVDF/PLLA blends with different phase size GPC curve (a) and ¹H-NMR (b) spectrum of PMMA-COOH, Figure S1 which number-average molecular weight (M_n) is 3850. The particles distribution diagram of PVDF/PLLA (50/50, w/w) blends (I) melt mixing with 3wt% pristine Boehmite (II), Figure S2 Boehmite-GPS (III) and Boehmite-GPS-PMMA (IV) nanorods respectively. SEM (a) and TEM (b) image of PVDF/PLLA (50/50) blends. Figure S3 SEM images and EDS scan of the PVDF/PLLA (70/30) (a), PVDF/PLLA/Boehmite-GPS (70/30/3)(b) and Figure S4 PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) (c) blends. The mark of 1, 2 and 3 in SEM are correspond to the subscript in the EDS. The particles distribution diagram of PVDF/PLLA (50/50, w/w) (a) and PVDF/PLLA (70/30, w/w) (b) blends melt mixing with 0 Figure S5 wt%,1 wt%, 3wt% and 5 wt% Boehmite-GPS-PMMA nanorods respectively. The TEM images of the PVDF/PLLA/Boehmite-GPS-PMMA (50/50/3). The number-average molecular weight of the PMMA Figure S6 chain grafted onto the Boehmite-GPS-PMMA is 2000 g/mol (a), 3850 g/mol (b) and 8600 g/mol (c) respectively. Figure S7 The storage modulus (a) and complex viscosity (b) of PVDF/PLLA

Table of contents

	(70/30), PVDF/PLLA/Boehmite-GPS (70/30/3) and
	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3)
	TEM (1) and SEM (2) image of morphologies of PLLA/PVDF
Figure S8	(50/50, w/w) (a) blends with 3wt% PS-g-GMA-g-PMMA(b) and
	(c) Boehmite-GPS-PMMA nanorods respectively.
	The particles distribution diagram of PVDF/PLLA (50/50, w/w) (a)
Figure S9	blends with 3wt% PS-g-GMA-g-PMMA(b) and (c) Boehmite-GPS-
	PMMA nanorods respectively.
	FTIR spectra of: (I) Boehmite-GPS-PMMA, (II)
F ' 010	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blend mixed for 1
Figure S10	min; (III) PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) mixed
	for 10 min.
	(a) The TGA and DTG of the PVDF/PLLA (70/30),
	PVDF/PLLA/Boehmite-GPS (70/30/3) and
	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blends under air as
Figure S11	purge gas; (b) The TGA and DTG of the PVDF/PLLA/Boehmite-
	GPS-PMMA (70/30/1), PVDF/PLLA/Boehmite-GPS-PMMA
	(70/30/3) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3)
	blends under air.
	SEM image and EDS scan of the residue of the PVDF/PLLA
	(70/30), PVDF/PLLA/Boehmite-GPS (70/30/3) and
Figure S12	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blends. The mark
	of 1, 2 and 3 in SEM are correspond to the subscript in the EDS.
	FTIR spectra (a) and XRD images (b) of the white powders of
Figure S13	PVDF/PLLA (70/30, w/w) blends after the combustion of LOI test.

Formula S1. Formula for calculating the grafting ratio of PMMA with epoxy group on Boehmite nanorods surface. Where $E_{PMMA-COOH}$ is the grafting ratio of the grafted PMMA chain on the surface of Boehmite nanorods, which based on the GPS content on the Boehmite nanorods. $n_{actual PMMA}$ is the actual number mole of grafting PMMA chain on the surface of Boehmite nanorods. $n_{Idea PMMA}$ is the number mole of theory obtained grafting PMMA chain on the surface of Boehmite nanorods, which calculated by the content of GPS on the Boehmite nanorods surface. Mn_{GPS} and $Mn_{PMMA-COOH}$ is the molecular weight of 3-Glycidoxypropyl trimethoxysilane (GPS) and carboxyl-terminated polymethyl methacrylate (PMMA-COOH) respectively. $f_{Boehmite}$, $f_{Boehmite-GPS}$ and $f_{Boehmite-GPS-PMMA}$ represent the inorganic residual content of pristine Boehmite, Boehmite-GPS, and Boehmite-GPS-PMMA nanorods respectively after the TGA test respectively.

nanorods									
Sample	Mn ^a	PDI ^a	d^b	lb	$T_d{}^c$	$f_{inorganic}$ c	W GPS ^d	W _{PMMA} ^d	E_{PMMA}^{d}
	(g/mol)		(nm)	(nm)	(°C)	(wt%)	(wt%)	(wt%)	(%)
РММА-СООН	3850±60	2.24			398.8	0			
Boehmite			8.2±2.2	98±23	446.1	80.7±0.1			
Boehmite-GPS			8.1±1.9	86±19	472.3	79.3±0.1	1.8±0.2		
Boehmite-GPS	2850+60	250+60 2.24	0.460 2.24 16.845.6 02.14	02 + 25	392.1 and	667102	1.9+0.2	10.2+0.6	6671106
-PMMA	5650±00	2.24	+ 10.8±3.0	93±23	481.1	00.7±0.2	1.0±0.2	19.2±0.0	00.7±10.0

Table S1. Molecular parameter of PMMA-COOH and the surface modified Boehmite

^a Measure from GPC plots using THF as eluent and PS to linear calibration at 35 °C

(Mn: number-averaged molecular weight of the single PMMA chains; PDI:

polydispersity (Mw/Mn) of the single PMMA chains).

^b Measured from TEM images (d: number-averaged diameter of nanorods; number-

averaged length of nanorods).

^c Measured from the TGA and DTG curves. (T_d : the TGA temperature with maximum loss rate; $f_{inorganic}$: the inorganic oxide residual content).

^d Calculated on the basis of TGA data (w_{GPS} : the grafting content of the GPS on the surface of Boehmite nanorods; w_{PMMA} : the grafting content of the PMMA on the surface of Boehmite nanorods; E_{PMMA} : the grafting ratio of the grafted PMMA chain on the surface of Boehmite nanorods calculated by Formula S1, which is based on the GPS content on the Boehmite nanorods.).

		Work of
Sample	Sample Composition	Fracture
		/ J.m ⁻²
1	PVDF/PLLA (50/50)	1.04×10 ⁵
2	PVDF/PLLA/Boehmite (50/50/3)	1.07×10 ⁵
3	PVDF/PLLA/Boehmite-GPS (50/50/3)	1.48×10 ⁵
4	PVDF/PLLA/Boehmite-GPS-PMMA (50/50/1)	1.47×10 ⁵
5	PVDF/PLLA/Boehmite-GPS-PMMA (50/50/3)	4.47×10 ⁵
6	PVDF/PLLA/Boehmite-GPS-PMMA (50/50/5)	1.08×10 ⁶
7	PVDF/PLLA(70/30)	2.40×10 ⁴
8	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/1)	2.34×10 ⁵
9	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3)	7.14×10 ⁵
10	PVDF/PLLA/Boehmite-GPS-PMMA (70/30/5)	1.15×10 ⁶

Table S2. The work of fracture of the PVDF/PLLA blends with the Boehmite

Sample	Sample Composition	LOI ^a (%)
1	PVDF/PLLA (50/50)	24.1%
2	PVDF/PLLA/PS-g-GMA-g-PMMA (50/50/3)	24.3%
3	PVDF/PLLA/Boehmite-GPS-PMMA (50/50/3)	28.6%

Table S3. The LOI of PVDF/PLLA blends with different phase size

^a Limited oxygen index was measured by Oxygen index instrument

Figure S1. GPC curve (a) and ¹H-NMR (b) spectrum of PMMA-COOH, which number-average molecular weight (M_n) is 3850.

Figure S2. The particles distribution diagram of PVDF/PLLA (50/50, w/w) blends (I) melt mixing with 3wt% pristine Boehmite (II), Boehmite-GPS (III) and Boehmite-GPS-PMMA (IV) nanorods respectively.

Figure S3. SEM (a) and TEM (b) image of PVDF/PLLA (50/50) blends.

Figure S4. SEM images and EDS scan of the PVDF/PLLA (70/30) (a), PVDF/PLLA/Boehmite-GPS (70/30/3) (b) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) (c) blends. The mark of 1, 2 and 3 in SEM are correspond to the subscript in the EDS.

Figure S5. The particles distribution diagram of PVDF/PLLA (50/50, w/w) (a) and PVDF/PLLA (70/30, w/w) (b) blends melt mixing with 0 wt%,1 wt%, 3wt% and 5 wt% Boehmite-GPS-PMMA nanorods respectively.

Figure S6. The TEM images of the PVDF/PLLA/Boehmite-GPS-PMMA (50/50/3). The number-average molecular weight of the PMMA chain grafted onto the Boehmite-GPS-PMMA is 2000 g/mol (a), 3850 g/mol (b) and 8600 g/mol (c) respectively.

Figure S7. The storage modulus (a) and complex viscosity (b) of PVDF/PLLA (70/30), PVDF/PLLA/Boehmite-GPS (70/30/3) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3)

Figure S8. TEM (1) and SEM (2) image of morphologies of PLLA/PVDF (50/50, w/w) (a) blends with 3wt% PS-g-GMA-g-PMMA(b) and (c) Boehmite-GPS-PMMA nanorods respectively.

Figure S9. The particles distribution diagram of PVDF/PLLA (50/50, w/w) (a) blends with 3wt% PS-g-GMA-g-PMMA(b) and (c) Boehmite-GPS-PMMA nanorods respectively.

Figure S10. FTIR spectra of: (I) Boehmite-GPS-PMMA, (II) PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blend mixed for 1 min; (III) PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) mixed for 10 min.

Figure S11 (a) The TGA and DTG of the PVDF/PLLA (70/30), PVDF/PLLA/Boehmite-GPS (70/30/3) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blends under air as purge gas; (b) The TGA and DTG of the PVDF/PLLA/Boehmite-GPS-PMMA (70/30/1), PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blends under air.

Figure S12. SEM image and EDS scan of the residue of the PVDF/PLLA (70/30), PVDF/PLLA/Boehmite-GPS (70/30/3) and PVDF/PLLA/Boehmite-GPS-PMMA (70/30/3) blends. The mark of 1, 2 and 3 in SEM are correspond to the subscript in the EDS.

Figure S13. FTIR spectra (a) and XRD images (b) of the white powders of PVDF/PLLA (70/30, w/w) blends after the combustion of LOI test.