Supporting Information

Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting

Sundaram Chandrasekaran^{a,b}, Peixin Zhang^a, Feng Peng^c, Chris Bowen^d, Jia Huo^e and Libo Deng^a*

^aCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China

^bKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China ^cSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China

^dDepartment of Mechanical Engineering, University of Bath, BA2, 7AY, Bath, UK

^eState Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

* Corresponding author Email: *Denglb@szu.edu.cn*

Fig. S1 UV-visible absorption spectra for prepared samples (a and c) and (b and d) are their corresponding Tauc Plots and (e) N_2 adsorption and desorption isotherms for bare WO₃ and VW-S2 sample.

Fig. S2 (a-c) and (d-f) are W4f, Mn2p and O1s XPS core-level spectrum of MW-S1 and MW-S3 samples, respectively.

Fig. S3 (a-b) and (c-d) are W4f, V2p and O1s XPS core-level spectrum of VW-S1 and VW-S3 samples, respectively.

Fig. S4. Room temperature ESR spectra of pristine WO₃ and VW-S2 sample

Sample	Experimental Band gap (eV)	Electrical resistivity (Ω m)	Electrical conductivity (S/m)
WO ₃	2.69	1.20 x 10 ²	8.333 x 10 ⁻³
MW-S1	2.51	0.92 x 10 ²	1.087 x 10 ⁻²
MW-S2	1.81	0.46 x 10 ²	2.174 x 10 ⁻²
MW-83	2.16	0.32 x 10 ²	3.125 x 10 ⁻²
VW-S1	2.28	0.83 x 10 ²	1.205 x 10 ⁻²
VW-S2	1.75	0.11 x 10 ²	0.910 x 10 ⁻¹
VW-S3	2.10	0.16 x 10 ²	0.625 x 10 ⁻¹

Table S1 Experimental optical and electrical properties

 Table S2 Chemical composition analysis by EDS and XPS analysis

	EDS analysis					XPS analysis						
Sample	Weight. %			Atomic. %			Atomic. %					
	W	Mn	V	0	W	Mn	V	0	W	Mn	V	0
WO ₃	74.66	-	-	25.44	20.34	-	-	79.66	19.74	-	-	80.26
MW-S1	73.58	1.04	-	25.29	20.01	0.95	-	79.04	19.72	0.95	-	79.33
MW-S2	71.45	3.04	-	25.51	19.07	2.71	-	78.22	19.17	2.80	-	78.03
MW-S3	71.46	4.77	-	23.77	19.82	4.43	-	75.75	19.76	4.91	-	75.68
VW-S1	76.38	-	1.09	22.53	22.52	-	1.16	76.32	22.26	-	1.10	76.65
VW-S2	77.59	-	3.02	19.39	24.93	-	3.50	71.57	24.89	-	3.23	71.88
VW-S3	77.21	-	4.98	17.80	25.76	-	6.00	68.24	25.85	-	5.12	68.41

Fig. S5 FE-SEM images of undoped WO₃ sample and insert shows the EDS spectra of WO₃

Fig. S6 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of MW-S1 sample

Fig. S7 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of MW-S2 sample

Fig. S8 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of MW-S3 sample

Fig. S9 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of VW-S1 sample

Fig. S10 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of VW-S2 sample

Fig. S11 (a-b) FE-SEM images, (c-e) electron density mapping and (f) EDS spectrum of VW-S3 sample

Fig. S12 (a) Electrocatalytic HER activity (a) Polarization curves for the MW-S1, MW-S3, VW-S1 and VW-S3 samples, and (b) their corresponding Tafel Plots. All electrocatalytic studies were performed in $0.5M H_2SO_4$ at room temperature with a sweep rate of 5 mV sec⁻¹.

Fig. S13 (a) TEM and (b-c) EDS analysis for VW-S2 sample after durability test

Fig. S14 Long term PEC water splitting durability test for VW-S2 photoelectrode at fixed potential of 1.23 V *vs.* RHE in 0.1 M Na₂SO₄.

 Table S3 Summarized electrocatalytic HER performance of some previously reported high performance catalysts

Electrocatalyst (mg cm ⁻²)	Electrolyte	Current density (J, mA cm ⁻²)	Corresponding overpotential (ŋ, mV)	Tafel plot (mV per decade)	Exchange current density (J ₀ , mA cm ⁻²)	Reference
WO ₃ (0.285)	0.5 M H ₂ SO ₄	10	-411	121	1.25x10 ⁻⁵	This work
MW-S2 (0.285)		10	-97	68	2.01x10 ⁻³	
VW-S2 (0.285)		10	-38	41	0.098	
20 wt.% PtC(0.285)		10	-17	32	0.210	
WO _{2.9} (0.285)	0.5 M H ₂ SO ₄	10	-70	50	0.4	[1]
WO ₃ -r NSs (0.285)	0.5 M H ₂ SO ₄	10	-38	38	-	[2]
WO ₃ ·H ₂ O (28.57)	0.5 M H ₂ SO ₄	10	-66	34.8	14.2 x10 ⁻³	[3]
$\begin{array}{c} 3D \text{ urchin-like Mo-} \\ W_{18}O_{49} \text{ nanostructure} \\ (0.16) \end{array}$	0.5 M H ₂ SO ₄	10	-45	54	-	[4]
WO ₂ -C mesoporous nanowires (0.35)	0.5 M H ₂ SO ₄	10	-58	46	0.64	[5]
P-modified WN/rGO (0.337)	0.5 M H ₂ SO ₄	10	-85	54	-	[6]
	0.5 M H ₂ SO ₄	10	-240	60	-	[7]
WC-CNTs ^a	0.5 M H ₂ SO ₄	10	26.5	30	-	[8]
NiWS _x ^a	PBS	10	373	96 $(m=120, 150)$	10-2.66	[9]
CoWS _x ^a			271	(1 -120-130)	10-2.25	
CoMoS _x ^a			241	/8 (η=120-150)	10-2.89	
				85 (η=120-150)		
Hex-WO ₃ ^a	1 M H ₂ SO ₄	-	-	-0.116	6.61	[10]

V-doped Ni ₃ S ₂ /NF ^b	1 M KOH	10	68 mV	112	-	[11]
WC (20)	0.5 M H ₂ SO ₄	10	-114	110	-	[12]
N doped WC (16 mg)			-89	75		
$W + Ru/C + BP_{2000}$ (0.1466)	0.5 M H ₂ SO ₄	10	-85	46	-	[13]
Co:WS ₂ /Co:W ₁₈ O ₄₉ ^b	0.5 M H ₂ SO ₄	10	-210	49	-	[14]
MoS ₂ /WS ₂ (0.707)	0.5 M H ₂ SO ₄	10	-113	37	-	[15]
V-CoP/CC ^b	0.5 M H ₂ SO ₄	10	47	67.6	0.897	[16]
V and N co-doped MoS_2 on rGO (0.2)	0.5 M H ₂ SO ₄	10	68	41	-	[17]
carbon coated V ₈ C ₇ ^b	0.5 M H ₂ SO ₄	10	38	34.5	-	[18]
Co ₄ N ^b	1.0 M KOH	10	37	44		[19]
CoW(OH) _x ^b	1.0 M PBS	10	73.6	149.59	-	[20]

^a mass loading is not available and ^b catalysts were loaded on conductive support

Table S4 Summarized photoelectrochemical water splitting performance of some previously
reported high performance photoelectrodes

Photoelectrode	Electrolyte	Light condition	Current density (J ₀)mA cm ⁻²	Current density (J ₀) at over potential (V)	Reference
WO ₃	0.1 M Na ₂ SO ₄	Visible light under AM 1 5G (100 mW	0.61	@1.23 V vs. RHE	This work
MW-S2		cm^{-2}) irradiation	1.38		
VW-S2			2.49		
WO ₃	0.1 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW	0.16	@1.0 V vs. Ag/AgCl.	[21]
RuO ₂ (0.001 wt%)/WO ₃		cm ⁻²) irradiation	0.43		
PtO _x (0.5 wt%)/WO ₃			0.10		
RuO ₂ (0.001 wt%)/PtO _x (0.5 wt%)/WO ₃			0.20		
WO ₃ /W	$\frac{1 \text{ mM } B_{10} Br_{10} \cdot -/2^{-}}{\text{ and } 0.50 \text{ M}}$ TBASO ₃ CH ₃ in Acetonitrile	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.0	@1.23 V vs. NHE	[22]
WO ₃	0.5 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	0.55	@1.23 V vs. RHE	[23]
CuWO ₄	0.1 M PBS	Visible light under AM 1.5G (100 mW	0.125	@1.23 V vs. RHE	[24]
CuW _{0.35} Mo _{0.65} O		cm ⁻²) irradiation	0.210		
HO–WO ₃	0.1 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	0.175	@1.2 V vs. RHE	[25]
BVO –WO with 75 nm thicknesses	0.5 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	0.55	@1.0 V vs. Ag/AgCl.	[26]
WO ₃	0.5 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW	0.69	@1.23 V vs. RHE	[27]
WO ₃		cm ²) irradiation	0.88		
Plasma method Nano sized WO ₃	3 M H ₂ SO ₄	Visible light under AM 1.5G (100 mW	1.00	@1.75 V vs. RHE	[28]

		cm ⁻²) irradiation			
WO ₃ /WO _{3-x}	0.1 M K ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	2.10	@1.23 V vs. RHE	[29]
WO ₃	1.0 M HClO ₄ with 0.20 M 4- cyanopyridine <i>N</i> - oxide	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.4	@1.23 V vs. RHE	[30]
WO ₃ CoO _x /WO ₃	0.1 M KPi	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	0.80 1.55	@1.23 V vs. RHE	[31]
WO ₃ WO ₃ MCs/Sb ₂ S ₃ heterojunction structures	1 M H ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	0.40	@0.8 V vs. RHE	[32]
WO ₃ 4% Gd-WO ₃	0.2 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.10 2.51	@1.23 V vs. RHE	[33]
Dual etched and reduced WO ₃	1 M H ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.18	@1.0 V vs. Ag/AgCl.	[34]
Annealed Nano wire WO ₃	0.1 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.45	@1.23 V vs. RHE	[35]
WO ₃ -Fe ₂ O ₃	1 M NaOH	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.41	@1.23 V vs. RHE	[36]
(W, Mo)-BiVO ₄	0.5 M K ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.55	@1.23 V vs. RHE	[37]
Ag doped WO ₃	1 M H ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	2.10	@0.35 V vs. Hg/HgCl	[38]
Au doped WO ₃	0.1 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	2.3	@1.0 V vs. SCE	[39]
H-WO ₃ (350°C)	1.0 M Na ₂ SO ₄	Visible light under AM 1.5G (100 mW cm ⁻²) irradiation	1.05	@1.2 V vs. Ag/AgCl.	[40]

Fig. S15 DFT- PDOS analysis for (a) the undoped WO₃, (b) Mn doped WO₃ and (c) V doped WO₃

Table S5 Total energies and band gaps for pristine WO₃ and Mn or V-doped WO₃

	Pristine WO ₃	Mn doped WO ₃	V doped WO ₃
E _{tot} (eV)	-317.21	-307.81	-311.42
Band Gap (eV)	1.31	1.05	0.95

Table S6 Relative stability of Mn or V doping in surface and subsurface layer of WO₃(001) surface.

	Mn (eV)	V (eV)
Surface layer	-1.79	-0.95
Subsurface layer	0	0

References

- Y. H. Li, P. F. Liu, L. F. Pan, H. F. Wang, Z. Z. Yang, L. R. Zheng, P. Hu, H. J. Zhao, L. Gu, H. G. Yang, *Nat. Commun.*, 2015, 6, 8064.
- [2] T. Zheng, W. Sang, Z. He, Q. Wei, B. Chen, H. Li, C. Cao, R. Huang, X. Yan, B. Pan, *Nano Lett.*, 2017, 17, 7968.
- [3] A. K. Nayak, M. Verma, Y. Sohn, P. A. Deshpande, D. Pradhan, *ACS Omega.*, 2017, **2**, 7039.
- [4] X. Zhong, Y. Sun, X. Chen, G. Zhuang, X. Li, J. G. Wang, Adv. Funct. Mater., 2016, 26, 5778.
- [5] R. Wu, J. Zhang, Y. Shi, D. Liu, B. Zhang, J. Am. Chem. Soc. 2015, 137, 6983.
- [6] H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, *Angew. Chem., Int. Ed.*, 2015, 54, 6325.
- [7] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, *Nat. Mater.*, 2013, 12, 850.
- [8] X. Fan, H. Zhou, X. Guo, ACS Nano., 2015, 9, 5125.
- [9] P. D. Tran, S. Y. Chiam, P. P. Boix, Y. Ren, S. S. Pramana, J. Fize, V. Artero, J. Barber, Energy Environ. Sci., 2013, 6, 2452.
- [10] A. Phuruangrat, D. J. Ham, S. J. Hong, S. Thongtem, J. S. Lee, J. Mater. Chem., 2010, 20, 1683.
- [11] Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao, C. T. Kwok, M. Yang, Z. Wang, D. Chua, S. Wang, ACS Appl. Mater. Interfaces., 2017, 9, 5959.
- [12] N. Han, K. R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V. S. Batista, W. Liu, *Nat. Commun.*, 2018, 9, 924.
- [13] U. Joshi, S. Malkhandi, Y. Ren, T. L. Tan, S. Y. Chiam, B. S. Yeo, ACS Appl. Mater. Interfaces., 2018, 10, 6354.
- [14] X. Shi, M. Fields, J. Park, J. M. McEnaney, H. Yan, Y. Zhang, C. Tsai, T. Jaramillo, R. Sinclair, J. K. Nørskov, *Energy Environ. Sci.*, 2018, 11, 2270-2277.
- [15] Y. Chen, R. Ren, Z. Wen, S. Ci, J. Chang, S. Mao, J. Chen, *Nano Energy* 2018, 47, 66.
- [16] X. Xiao, L. Tao, M. Li, X. Lv, D. Huang, X. Jiang, H. Pan, M. Wang, Y. Shen, *Chem. Sci.* 2018, 9, 1970.
- [17] J. Guo, K. Zhang, Y. Sun, Y. Zong, Z. Guo, Q. Liu, X. Zhang, Y. Xia, *Inorg. Chem. Front.*, 2018, 5, 2092-2099.
- [18] H. Xu, J. Wan, H. Zhang, L. Fang, L. Liu, Z. Huang, J. Li, X. Gu, Y. Wang, Adv. Energy Mater., 2018, 1800575.
- [19] Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, Angew. Chem., Int. Ed., 2018, 57, 5076.

- [20] L. Zhang, P. F. Liu, Y. H. Li, C. W. Wang, M. Y. Zu, H. Q. Fu, X. H. Yang, H. G. Yang, ACS Catal., 2018, 8, 5200.
- [21] S. S. K. Ma, K. Maeda, R. Abe, K. Domen, *Energy Environ. Sci.*, 2012, 5, 8390.
- [22] Q. Mi, R. H. Coridan, B. S. Brunschwig, H. B. Gray, N. S. Lewis, *Energy Environ. Sci.*, 2013, 6, 2646.
- [23] H. W. Jeong, W. S. Chae, B. Song, C. H. Cho, S. H. Baek, Y. Park, H. Park, *Energy Environ*. Sci., 2016, 9, 3143.
- [24] J. C. Hill, Y. Ping, G. A. Galli, K. S. Choi, *Energy Environ. Sci.*, 2013, 6, 2440.
- [25] J. Zhang, X. Chang, C. Li, A. Li, S. Liu, T. Wang, J. Gong, J. Mater. Chem. A., 2018, 6, 3350.
- [26] C. N. Van, T. H. Do, J. W. Chen, W. Y. Tzeng, K. A. Tsai, H. Song, H. J. Liu, Y. C. Lin, Y. C. Chen, C. L. Wu, NPG Asia Mater., 2017, 9, e357.
- [27] T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng, Q. Xue, S. Yang, *Nanoscale* 2015, 7, 2933.
- [28] M. de Respinis, G. De Temmerman, I. Tanyeli, M. C. van de Sanden, R. P. Doerner, M. J. Baldwin, R. van de Krol, *ACS Appl. Mater. Interfaces.*, 2013, **5**, 7621.
- [29] P. Chen, M. Baldwin, P. Bandaru, J. Mater. Chem. A., 2017, 5, 14898.
- [30] Q. Mi, A. Zhanaidarova, B. S. Brunschwig, H. B. Gray, N. S. Lewis, *Energy Environ. Sci.*, 2012, **5**, 5694.
- [31] J. Huang, Y. Zhang, Y. Ding, ACS Catal., 2017, 7, 1841.
- [32] J. Zhang, Z. Liu, Z. Liu, ACS Appl. Mater. Interfaces., 2016, 8, 9684.
- [33] Y. Liu, J. Li, W. Li, Y. Yang, Y. Li, Q. Chen, J. Phys. Chem. C., 2015, 119, 14834.
- [34] W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng, ACS Nano., 2014, 8, 11770.
- [35] J. Su, X. Feng, J. D. Sloppy, L. Guo, C. A. Grimes, *Nano Lett.*, 2010, 11, 203.
- [36] K. Sivula, F. L. Formal, M. Gratzel, *Chem. Mater.*, 2009, **21**, 2862.
- [37] X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim, J. H. Park, *Nat. Commun.*, 2014, 5, 4775.
- [38] R. Solarska, A. Królikowska, J. Augustyński, Angew. Chem., Int. Ed., 2010, 49, 7980.
- [39] D. Hu, P. Diao, D. Xu, Q. Wu, Nano Research 2016, 9, 1735.
- [40] G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, *Energy Environ. Sci.*, 2012, 5, 6180.