
Electronic Supplementary Information

Versatile, Transferrable 3-Dimensionally-Nanofabricated Au 

Catalysts with High-Index Crystal Planes for Highly Efficient 

and Robust Electrochemical CO2 Reduction

Minhyung Cho§a, Jong Min Kim§a, Beomil Kima, Soonmin Yima, Ye Ji Kima, Yeon Sik Jung*a, and Jihun Oh*abc

a Department of Materials Science and Engineering, Korea Advanced Institute of Science and 

Technology (KAIST), Daejeon 34141, Republic of Korea 

b Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced 

Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

c KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 

Daejeon 34141, Republic of Korea 

E-mail: ysjung@kaist.ac.kr

E-mail: jihun.oh@kaist.ac.kr

§ These authors contributed equally

S1

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2019

mailto:ysjung@kaist.ac.kr
mailto:jihun.oh@kaist.ac.kr


Experimentation

Master mold preparation 

A master mold with 200 nm width and 1.2 μm pitch was fabricated using KrF photolithography followed 

by reactive ion etching process. To reduce the surface energy before using it as a master mold, hydroxyl-

terminated PDMS homopolymer solution (1.5 wt%) purchased from Polymer Source Inc. (Canada) was 

spin-coated on the master mold and thermal annealed at 200 oC for 2 hours. After thermal annealing, the 

unattached polymer was washed with heptane. 

Solvent-assisted nanotransfer printing process and sample preparation

PMMA homopolymer purchased from Sigma-Aldrich Inc. was dissolved in a mixed solvent of toluene, 

acetone, and heptane (4.5:4.5:1 by volume, 4 wt%). A PMMA solution was spin-coated onto the master 

mold, and PI adhesive film purchased from 3M Inc. was then smoothly attached on the surface of the 

PMMA replica and detached from the mold. Through oblique-angle deposition (deposition angle = 85o) 

using an e-beam evaporator, Au NWs were formed on the PMMA replica/PI adhesive film. The Au NWs 

on the PMMA replica/PI adhesive film were exposed to a mixed solvent vapor (acetone/heptane 1:1 by 

volume) at 55 oC for 20~30 s and then directly contacted on the receiver substrates and transferred. After 

the transfer process, the PMMA replica was removed by toluene solvent. The bare Au thin film was 

prepared by e-beam deposition with normal incidence angle on Si substrates. All prepared multi-stacked 

Au NWs and bare Au electrodes were sealed with Nitto tape to confine the reactive area and connected 

with copper wires to apply external bias through a potentiostat. A carbon paper with a microporous layer 

(SIGRACET, 39BC) was used as a GDE. For the transferring of MS-Au NWs onto a GDE, firstly, MS-

Au NWs were prepared on a Cu foil substrate, which was a sacrificial substrate. PMMA polymer as a 
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transfer medium was spin-coated on the prepared multi-stacked Au NWs on the Cu foil substrate. The top 

surface of the GDE was treated by O2 plasma using ICP-RIE to lower the hydrophobicity of the surface. 

Similar to the well-known graphene transfer process [1], PMMA coated multi-stacked Au NWs were 

successfully transferred onto the surface-treated GDE using a Cu etchant solution. After transfer to the 

GDE, the PMMA polymer was removed by washing with toluene solvent.

Characterization 

SEM, EBSD, TEM, XPS, XRD 

The surface morphologies of all prepared electrodes were investigated by field emission scanning 

electron microscopy (FE-SEM: Hitachi S-4800, JEOL 7600F) operated at 15 kV. The exposed crystalline 

facet was observed through electron backscatter diffraction (EBSD) with a Hikari detector in the SEM 

(Quanta 3D FEG) with 20 kV accelerating voltage. Top-view transmission electron microscopy (TEM) 

samples were prepared by mechanical polishing, and investigated by TEM (JEOL JEM-ARM200F 

microscope) operated at 200 kV. Surface chemical composition was analyzed by X-ray photoelectron 

spectrometer (K-alpha, Thermo VG Scientific), and grain size and crystal information were obtained with 

a multi-purpose thin-film X-ray diffractometer (RIGAKU). 

ECSA Measurement

The electrochemical surface area of all prepared Au electrodes was characterized by surface Au 

oxidation/reduction reaction [2]. Through cyclic voltammogram (CV), an AuO monolayer was formed on 

the Au surface toward the anodic potential region and reduced at the cathodic potential region, 

S3



sequentially. By integrating reduction charge of the AuO monolayer at around 0.9 V vs. Ag/AgCl, the 

electroactive surface area of the Au for CO2RR could be calculated (448 C cm-2). The CV curve scanning 

was conducted in 0.05 M H2SO4 aqueous solution with the range of 0 to 1.5 V vs. Ag/AgCl (50 mV s-1).

CO2 Reduction Product Analysis

Electrochemical CO2 reduction experiments were conducted under room temperature and ambient 

pressure condition with a gas-tight single batch reactor or a flow reactor. For a gas-tight single batch 

reactor having 40 mL head space volume and 20 mL electrolyte, we used Ag/AgCl in 3M NaCl, graphite 

rods, and prepared the Au electrodes as a reference electrode, counter electrode, and working electrodes, 

respectively. For the electrolyte, CO2-saturated 0.2 M KHCO3 solution with pH 6.8 was used. The 

electrolyte in the reactor was stirred at 600 rpm during the reaction. Note that the re-oxidation of evolved 

CO gas product at the working electrodes in the single batch reactor can be ignored due to poor solubility 

of CO in water (~ 0.1 mM) [3]. For a flow reactor, 1M KOH solution with pH 13.65 was used as an 

electrolyte. CO2 was continuously fed to the backside of a cathode region with 20 sccm, and its gaseous 

product was captured with a Tedlar gas sampling bag. For reference and counter electrodes, Ag/AgCl in 

3M NaCl and Pt foil were used. All the potential written in this paper at single batch reactor results was 

specified with reversible hydrogen electrode (RHE) scale: ERHE = EAg/AgCl(3M NaCl) + 0.209 + 0.0591  pH. ×

All the potential for the flow reactor was specified with reversible hydrogen electrode (RHE) scale: ERHE 

= EAg/AgCl(sat’d KCl) + 0.197 + 0.0591  pH. All captured gaseous products in the head space (gas-tight ×

single batch reactor) or Tedlar bag (flow reactor) of the reactor were characterized by gas chromatography 

(Inficon, micro GC 3000). High performance liquid chromatography (HPLC, YL instruments, YL9100 

HPLC with SUGAR SH1011 column) was used to detect liquid products after CO2 electrolysis. 
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Product selectivity

In order to compare CO2RR activity of the Au electrocatalysts, we use the selectivity which is 

defined as

selectivity (%) =  .      (S1)
𝑃𝑜𝑑𝑢𝑐𝑡 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)
𝑇𝑜𝑡𝑎𝑙 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) × 100

Since no liquid products were detected after CO2 electrolysis from HPLC, total F.E. in (S1) includes F.E. 

of evolved CO and H2. 

Mass activity calculation

In order to calculate mass activity, we first dissolved 10 layers of MS-Au printed on an 1 cm2 glass 

substrate in a mixture solution of nitric acid and hydrochloric acid and the amount of the dissolved Au in 

the solution was measured using inductively coupled plasma mass spectrometry (ICP-MS, Agilent, 7700S 

ICP-MS). The mass activity of MS-Au at -0.19 V were then calculated from the CO2RR current density 

at -0.19 V divided by the measured Au mass, which is 4.17 μg/cm2/Au-layer.
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Figure S1. TEM images and XRD results of Au NWs depending on deposition angles, a) 75 o and b) 85o, 

respectively. The green color indicates preferential crystal orientation, and the blue color indicates un-

preferential crystal orientation. 
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Figure S2. Electron backscattering diffraction (EBSD) results for Au NWs. Color-mapping of a) normally 

transferred Au NWs and b) inversely transferred Au NWs. For more accurate measurement, Au NWs used 

in our experiments were fabricated by oblique-angle deposition with 75o. 
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Figure S3. Au 4f X-ray photoelectron spectrometer (XPS) spectra of bare Au and Au nanowires, 

respectively. 
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Figure S4. a) Total current density (jtot), b) CO evolving partial current density (jCO), and c) H2 evolving 

partial current density (jH2) of bare Au and MS-Au electrodes. All current densities are denoted as surface-

area specific current density. 
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 Figure S5. Roughness factor of each electrode (bare Au and MS-Au electrodes). 
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Figure S6. Comparison of the CO selectivity of the 1-layer and 5-layers MS-Au at –0.49 and –0.59 V in 

CO2-saturated 0.2 M K2HPO4 (pH ~ 6.8) and 0.2 M KHCO3 (pH ~6.8).
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Figure S7. Schematic drawing of gas-tight single batch reactor.
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Figure S8. CO evolution current density of 1 and 5 layers of MS-Au in the flow reactor and single batch 

reactor, expressed in pH-independent Ag/AgCl reference scale. The inset shows jCO near the onset 

potential.
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Figure S9. CO selectivity of 1, 5 layers of MS-Au as a function of the applied potential with GDE in flow 

reactor (electrolyte: 1 M KOH).
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Figure S10. Comparison of mass activity for CO evolution denoted as partial current density jCO (A g-1) 

between MS-Au (this work) and poly(2,2′-(2,6-pyridine)-5,5′-bibenzimidazole) polymer wrapped 

multiwall carbon nanotube (MWNT/PyPBI/Au) [4].
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Figure S11. Geometric partial current density of CO evolution (jCO) and H2 evolution (jH2) of 1, 5 layers 

of MS-Au with GDE and bare GDE by itself.
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