Supporting Information

Surface Modification via Self-Assembling Large Cation for Improved

Performance and Modulated Hysteresis of Perovskite Solar Cells

Tongle Bu ^{a, c}, Jing Li ^a, Wenchao Huang ^{b*}, Wenxin Mao ^c, Fei Zheng ^d, Pengqing Bi ^d, Xiaotao Hao ^d, Jie Zhong ^{a*}, Yi-Bing Cheng ^{a, b, e} and Fuzhi Huang ^{a*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

^bDepartment of Materials Science and Engineering, Monash University, Clayton VIC 3800, Australia

^cDepartment of Chemical Engineering, Monash University, Clayton VIC 3800, Australia

^dSchool of Physics, State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China

eARC Centre of Excellence in Exciton Science, Monash University, Clayton VIC 3800, Australia

*Corresponding Email: fuzhi.huang@whut.edu.cn; wenchao.huang@monash.edu; jie.zhong@ whut.edu.cn

Experimental section

Materials

Unless specified, otherwise all chemicals were purchased from Alfa Aesar or Sigma-Aldrich and used as received. SnCl₂•2H₂O was purchased from Aladdin. Formamidinium iodide (FAI) and methylammonium bromine (MABr) were purchased from Lumtec, Taiwan. Lead iodide (PbI₂) and lead bromine (PbBr₂) were purchased from TCI. Phenyl-C61-butyric acid methyl ester (PCBM), n-Butylammonium (BA), tert-butylammonium (tBAI) and Spiro-OMeTAD were purchased from Xi'an Polymer Light Technology Corp.

Preparation of the perovskite precursors.

The CsFAMA mixed perovskite precursor was prepared by dissolving 1.4 M mixture of metal leadsalts which were composed of 0.85 PbI₂ and 0.15 PbBr₂, and 1.3 M organic cation which were composed of 0.85 FAI and 0.15 MABr in the mixture solvent of DMF/DMSO (4:1, by volume), and added 34 μ L CsI (pre-dissolved as a 2 M stock solution in DMSO) to achieve the desired Cs_{0.05}(FA_{0.85}MA_{0.15})_{0.95}Pb(I_{0.85}Br_{0.15})₃ perovskite solution with proper excess lead halide.

Device fabrication

FTO glass was etched by a laser machine (Universal Laser Systems, VLS2.30), and followed by ultrasonic cleaning through detergent, pure water and ethyl alcohol for 20 min, respectively. They were then dried with dry-air gas flow and then treated by plasma for 5 min. The compact SnO₂ film was achieved by chemical bath deposition (CBD). 5g urea was dissolved into 400mL deionized water, followed by the addition of 100 µL mercaptoacetic acid and 5 ml HCl (37 wt%). Finally, SnCl₂•2H₂O was dissolved in the solution at 0.012 M and then stored in fridge for 3 days before use. The as cleaned FTO glass was soaked into the diluted SnCl₂•2H₂O solution (0.002M) for 2 hours at 70 °C and then washed by deionized water and dried by gas gun blowing. The CBD process was repeated for 3 times to achieve the desired thickness, followed by annealing at 180°C for 1 hour. After cooling down, a 30 uL PCBM/ chlorobenzene (10 mg/mL) solution was spun onto the SnO₂ substrates, and followed by sintered at 70 °C for 5 min. The perovskite absorber was deposited on the UV-processed SnO₂ substrates (UV illuminated for 15 min) by spun a 25 µL mixed perovskite solution at 6000 rpm for 30 s with an acceleration speed of 1000 rpm, and 100 μ L anti-solvents of ethyl acetate was dropped at the last 5th second. The films were then annealed at 120 °C for 45 min, and after cooling down, a 30 uL different concentration of tBAI/ isopropanol solution was spun onto the perovskite films and followed by a sintering for 5 min at 100 °C. After cooling down, a 25 µL Spiro-OMeTAD solution, dissolving 73mg Spiro-OMeTAD into 1 mL chlorobenzene followed by the addition of 18 µL Li-TFSI (pre-dissolved as a 520mg/mL stock solution in acetonitrile) and 29 µL FK209 (pre-dissolved as a 300mg/mL stock solution in acetonitrile) and 30 µL 4-tertbutylpyridine was spun on the corresponding mixed perovskite films at 3000 rpm for 30 s. Finally, a 60 nm of gold was evaporated on the top of Spiro-OMeTAD as the back electrode to complete the whole device.

Characterizations

The surface morphologies and microstructures of the perovskite films and cross-sectional structure of the perovskite solar cells were investigated using a field-emission scanning electron microscopy (FESEM, Zeiss Ultra Plus). The different perovskite films were tested by an X-ray diffractometer (XRD, D8 Advance), UV-vis (lambda 750S, PerkinElmer). Grazing-incidence wide-angle X-ray scattering (GIWAXS) was performed at BL16B1 beamline of Shanghai Synchrotron Radiation Facility. The wavelength of incident X-ray was 0.124 nm and sample-to-detector distance was 283

mm. The incidence light angle was 0.12° and mar165CCD was used to collect the scattering signal. All the samples used for GIWAXS measurements were prepared in the same condition with the device fabrication. The steady-state photoluminescence (PL) spectra were obtained using a PL microscopic spectrometer (Flex One, Zolix, China); The time-resolved photoluminescence (TRPL) was measured at 770 nm using excitation with a 478nm light pulse from Delta Flex Fluorescence Lifetime System (Horiba Scientific Com., Japan). The EIS measurements were carried out by an EC-lab (SP300). The photocurrent density-voltage curves of the perovskite solar cells were measured using a solar simulator (Oriel 94023A, 300 W) and a Keithley 2400 source meter. The intensity (100 mW/cm²) was calibrated using a standard Si solar cell (Oriel, VLSI standards). All the devices were tested under AM 1.5G sun light (100 mW/cm²) using a metal mask of 0.16 cm² with a scan rate of 10 mV/s.

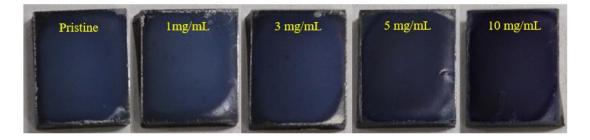


Fig. S1 The photograph of different concentration of tBAI/ IPA solution treated perovskite films.

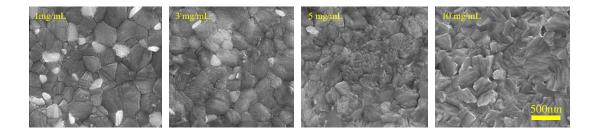


Fig. S2 The SEM images of different concentration of BAI/ IPA solution treated perovskite films.

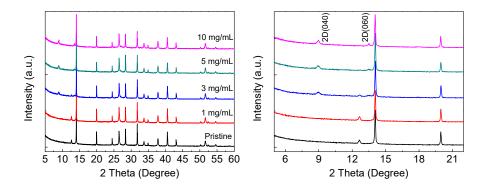


Fig. S3 XRD pattern of different concentration of BAI/ IPA solution treated perovskite films.

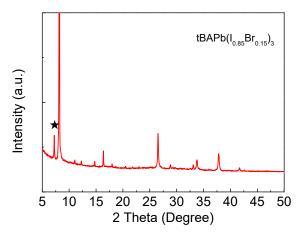


Fig. S4 XRD of tBA based 1D perovskite films.

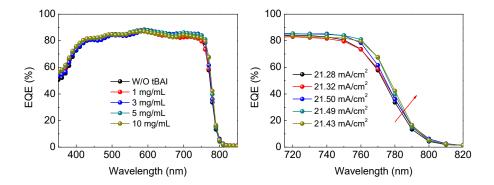
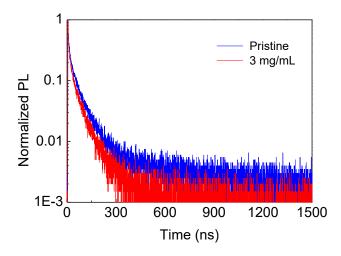
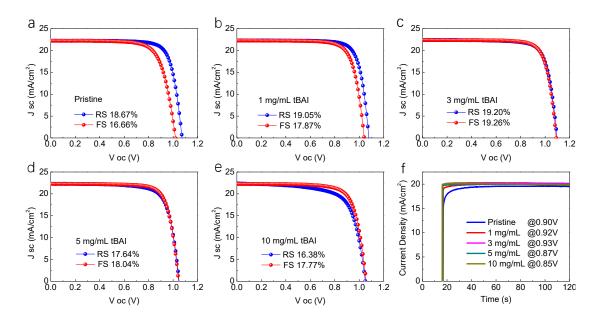




Fig. S5 EQE spectra of different concentration of tBAI/ IPA solution treated perovskite based solar devices.

Fig. S6 Normalized TRPL spectra of pristine perovskite and 3mg/mL tBAI treated perovskite films with Spiro-OMeTAD layer.

Fig. S7 The typical *J-V* curves of PSCs with different concentration of tBAI/ IPA solution treatment. (a) 0 mg/mL, (b) 1 mg/mL, (c) 3 mg/mL, (d) 5 mg/mL, (e) 10 mg/mL and (f) the corresponding steady state output current density under maximum power point.

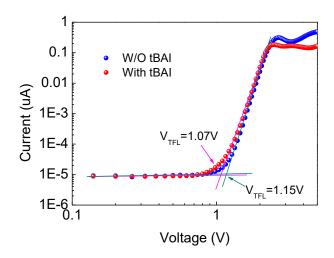


Fig. S8 Dark J-V characteristics of electron-only devices with and without tBAI treatment.

Table S1. The average parameters derived from the *J*-*V* curves of PSCs with different concentration of tBAI/ IPA solution treatment.

tBAI (mg/mL)	sweep	$V_{ m oc}$ (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)
0	RS	1.069±0.011	22.04±0.15	0.771±0.011	18.37±0.26
0	FS	1.019 ± 0.032	22.03±0.17	0.690±0.031	15.58±0.65
1	RS	1.072 ± 0.014	22.16±0.16	0.780 ± 0.006	18.62±0.41
1	FS	1.029±0.018	22.16±0.16	0.752 ± 0.015	17.09±0.62
3	RS	1.089 ± 0.015	22.33±0.31	0.777 ± 0.010	18.92±0.53
5	FS	1.083±0.016	22.32±0.32	0.782 ± 0.011	18.93±0.44
5	RS	1.053±0.012	22.12±0.34	0.741 ± 0.022	17.54±0.55
3	FS	1.056±0.033	22.12±0.33	0.767 ± 0.014	18.07 ± 0.28
10	RS	1.040 ± 0.021	21.90±0.26	0.734 ± 0.034	16.92±0.64
10	FS	1.044 ± 0.018	21.91±0.25	0.764 ± 0.018	17.66±0.23

Table S2. The fitted parameters of perovskite films with different concentration of tBAI/ IPA

1	solution treatment from	TRPL spectra.	$y = A1 \exp\left(-\frac{1}{2}\right)$	$\left(\frac{t}{\tau_1}\right) + A2 \exp\left(\frac{t}{\tau_1}\right)$	$\left(-\frac{t}{\tau^2}\right), \tau \text{eff} = \frac{A}{\tau^2}$	$\frac{11\tau 1 + A2\tau 2}{A1 + A2}.$
	Lifetime (ns)	Prinstine	1 mg/mL	3 mg/mL	5 mg/mL	10 mg/mL
-	A_1	0.37	0.28	0.24	0.37	0.43

A ₁	0.37	0.28	0.24	0.37	0.43
$ au_1$	41.06	61.15	83.90	47.68	36.59
A_2	0.40	0.47	0.61	0.39	0.35
τ_2	588.12	822.46	1034.06	507.65	523.23

with Spiro-OMeTAD from TRPL spectra. $y = A1 \exp\left(-\frac{t}{\tau_1}\right) + A2 \exp\left(-\frac{t}{\tau_2}\right), \tau eff = \frac{A1\tau_1 + A2\tau_2}{A1 + A2}.$						
Lifetime (ns)	A_1	$ au_1$	A_2	$ au_2$	$ au_{ m eff}$	
Prinstine	0.72	4.95	0.27	51.74	17.55	
3 mg/mL	0.75	3.78	0.25	41.64	13.24	

Table S3. The fitted parameters of pristine perovskite and 3mg/mL tBAI treated perovskite films