Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Hierarchical MoS₂-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage

Zhenyou Li*^{1,2,7}, Alexander Ottmann¹, Qing Sun^{1,3}, Anne K. Kast⁶, Kai Wang⁸, Ting Zhang², Hans-Peter Meyer⁵, Claudia Backes⁴, Christian Kübel^{7,8,9}, Rasmus R. Schröder^{3,6}, Junhui Xiang², Yana Vaynzof^{1,3}, Rüdiger Klingeler^{1,3}

 ¹Kirchhoff Institute of Physics, Heidelberg University, INF 227, 69120 Heidelberg, Germany
²College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049 China.
³Centre for Advanced Materials (CAM), Heidelberg University, INF 225, 69120 Heidelberg, Germany
⁴Institute of Physical Chemistry, Heidelberg University, INF 253, 69120 Heidelberg, Germany
⁵Institute of Earth Sciences, Heidelberg University, INF 236, D-69120 Heidelberg, Germany
⁶BioQuant, Cryo Electron Microscopy, Heidelberg University, INF 267, 69120 Heidelberg, Germany
⁷Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
⁸Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

Author Information

Corresponding Authors

*Email: zhenyou.li@kit.edu

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Fig. S1: SEM images of α -MoO₃ nanorods (a) and MDC (b); photo image of α -MoO₃ nanorods, DOPA and MDC water solution (c); and XRD pattern of synthesized α -MoO₃ nanorods, MDC, and standard pattern of α -MoO₃ according to JCPDS No. 89-5108 (d).

Fig. S2: XPS measurements of the MoS_2/NC -PNR superstructure: (a) survey scan, (b)~(c) high resolution scans of S2p and O1s.

Fig. S3: N_2 adsorption-desorption isotherms of (a) MoS_2/NC -PNR and (b) S-MoS₂. Insets are the pore distribution.

Fig. S4: Morphology of S-MoS₂ synthesized by the same procedure but without adding DOPA.

Fig. S5: SEM images of different samples after 150 cycles at 0.5 C: a~b for MoS₂/NC-PNR superstructure; c~d for S-MoS₂. The scale bar is 200 nm.

*Fig. S6: XRD pattern of the MoS*₂/*NC-PNR electrode at the 100*th *discharged and 100*th *charged states, respectively.*

Fig. S7 S-/TEM study of the MoS_2/NC -PNR electrode at the 100^{th} charged state: (a) HAADF-STEM image; (b)~(c): SAED patterns of (a) with different camera length, the red rings label the reflections of carbon; (d) EDX spectrum of the red square area in (a); (e)~(f) HAADF-STEM images with higher magnification.

TEM studies for the cycled electrode was performed using an aberration (image) corrected FEI Titan 80-300 microscope operated at 300 kV, equipped with a Gatan UltraScan CCD camera. The sample was prepared by dispersing the powder in dimethoxyethane, placing a drop on copper grids (Quantifoil Inc.) and taking of the residual suspension after natural drying in the glovebox.

Fig. S8: $I v^{-1/2}$ verses $v^{1/2}$ plot of the MoS₂/NC-PNR electrode.

Fig. S9: Impedance measurements of the MoS_2/NC -*PNR electrode before and after specific cycles at* 0.5 *C.*

Movie S1: HR-TEM tilt-series movie of the MoS_2/NC -PNR superstructure in the range of -68° to $+ 64^{\circ}$ with 1° steps. The scale bar is 50 nm.

MoS ₂ hierarchical structure	MoS ₂ content (%)	Cycling stability (cycles)	Rate capability		
			Specific capacity (mA h g ⁻¹)	Current density (A g ⁻¹)	Ref.
MoS ₂ /NC-PNR	74.2	700	925	0.067	Present work
			636	0.67	
			443	6.7	
MoS2 HNS	-	100	944	0.1	1
			762	1	
			576	5	
CNTs@MoS2@C	79.8	500	960	0.1	2
			820	1	
			758	2	
NDG/MoS ₂ /NDG	91.7	600	750	0.1	3
			589	1	
			416	4	
sS-MoS ₂ @C	87.2	100	980	0.1	4
			~830	1	
			805	5	
МНРС	62.3	300	948	0.1	5
			725	1	
			496	10	
НМСМ	71	300	915	0.1	6
			648	1	
			481	4	
mesoporous- carbon/MoS ₂	45	300	1400	0.1	
			740	1	7
			400	10	
MoS ₂ @C nanotubes	82	300	1327	0.067	8
			993	0.67	

			850	3.35	
			893	0.1	
MoS ₂ /CMK-3	70	150	713	1	9
			391	8	

Tab. S1: Battery performance comparison between this work and recently published MoS₂-based hierarchical structures.

Reference

- 1. Y. Wang, L. Yu and X. W. Lou, Angew. Chem.-Int. Edit., 2016, 55, 7423-7426.
- 2. Z. Zhang, H. Zhao, Y. Teng, X. Chang, Q. Xia, Z. Li, J. Fang, Z. Du and K. Świerczek, *Advanced Energy Materials*, 2018, **8**, 1700174.
- 3. B. Chen, Y. Meng, F. He, E. Liu, C. Shi, C. He, L. Ma, Q. Li, J. Li and N. Zhao, *Nano Energy*, 2017, **41**, 154-163.
- 4. B. Guo, K. Yu, H. Song, H. Li, Y. Tan, H. Fu, C. Li, X. Lei and Z. Zhu, *Nanoscale*, 2016, **8**, 420-430.
- 5. S.-K. Park, J. Lee, S. Bong, B. Jang, K.-d. Seong and Y. Piao, *ACS Appl. Mater. Interfaces*, 2016, **8**, 19456-19465.
- 6. Z. Bai, Y. Zhang, Y. Zhang, C. Guo and B. Tang, *Chemistry A European Journal*, 2015, **21**, 18187-18191.
- 7. Y. Fang, Y. Lv, F. Gong, A. A. Elzatahry, G. Zheng and D. Zhao, *Adv. Mater.*, 2016, **28**, 9385-9390.
- 8. X. Zhang, X. Li, J. Liang, Y. Zhu and Y. Qian, *Small*, 2016, **12**, 2484-2491.
- 9. X. Xu, Z. Fan, X. Yu, S. Ding, D. Yu and X. W. D. Lou, *Advanced Energy Materials*, 2014, 4, 1400902.