Supporting Information

Ultrathin CoO_x Nanolayers Derived from Polyoxometalate for Enhanced Photoelectrochemical Performance of Hematite Photoanodes

Xiaohu Cao,^a Yifan Wang,^a Junqi Lin^a, Yong Ding*,^{a,b}

^a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
*E-mail: dingyong1@lzu.edu.cn

Synthesis of Na10[A-a-SiW9O34] ·19H2O

Na₂WO₄·2H₂O (36.4 g) and Na₂SiO₃·5H₂O (2.2 g) were dissolved in 40 mL of hot water (80-100 °C). Then, this solution was added dropwise 26 mL of 6 M HCl in ~30 min with vigorous stirring. The solution was boiled until the volume is ~60 mL and filtrated. Na₂CO₃ (10 g) was dissolved in 30 mL water and slowly added to the above filtrate with gentle stirring. A precipitate formed slowly and was filtrated after ~1 h. The solid was stirred with 200 mL of 4 M NaCl solution and filtrated again. It was then washed successively with two 50-mL portions of ethanol and 50 mL of diethyl ether and dried under vacuum.

Figure S1. (a) X-ray crystal structure of Co_8POM in combined ball-and-stick and polyhedral representation (Co, cyan; O, red; Si, orange; C, black; W, gray; counter cations and H atoms were omitted for clarity). (b) FT-IR spectrum of Co_8POM . (c) Images of crystal Co_8POM

Figure S2. (a) Time-dependent UV-Vis absorption spectra of Co₈POM (0.5 mM). 200 min-light means that the sample was treated by illumination for 20 min (AM 1.5G, 100 mW/cm^2) at the end. (b) Kinetic trace at 508 nm according to the local maximum of Co₈POM in the UV-visible spectrum over a 3 h period (less than 1% decrease). These results illustrate the good stability of Co₈POM in the borate buffer solution (pH 9).

Figure S3. EDX of $CoO_x(POM)/Fe_2O_3$ photoanode. Cu element belongs to the substrate for TEM characterization. Tungsten (W) and silicon (Si) elements, which account for a significant proportion in Co_8POM , are not detected by EDX. It indicates that W and Si are not obviously affected by photo-generated carriers.

Figure S4. XRD patterns of pristine Fe_2O_3 and $CoO_x(POM)/Fe_2O_3$ photoanodes measured at a small grazing angle (Omega=0.5).

Figure S5. Optimizations with various Co_8POM concentrations (all in 20 min) (a) as well as various illumination times (all in 2 μ M) (b) for photodeposition treatments in Co_8POM solutions.

Figure S6. LSV (a) and chop LSV (b) of $CoO_x(POM)/Fe_2O_3$ and Fe_2O_3 photoanodes at 1 M NaOH (pH 13.6) electrolyte. For the original intention of investigating true active species, an 80 mM borate buffer solution (pH 9) was performed for almost all measurements in this paper.[1] For comparison, 1 M NaOH solution (pH 13.6), the most commonly used electrolyte for hematite photoanodes, was also applied as the electrolyte for the $CoO_x(POM)/Fe_2O_3$ electrode. Herein, the photocurrent arrived at 2.4 mA/cm² at 1.23 V_{RHE} which is twice as high as that of pristine hematite photoanode (1.2 mA/cm²). It strongly confirmed that our CoO_x cocatalyst prepared by a simple photodeposition method is comparable to other Co-based cocatalysts (Table S1). As shown in Figure S7, the photocurrent density of a piece of hematite photoanode differs from electrolyte to electrolyte.

Figure S7. A piece of pristine Fe₂O₃ photoanode was tested by LSV in different electrolytes (pH 9 borate buffer solution and pH 13.6 NaOH electrolyte).

Figure S8. Applied bias photon-to-current efficiencies (ABPE) of $CoO_x(POM)/Fe_2O_3$, $CoO_x(Salt)/Fe_2O_3$, and Fe_2O_3 photoanodes.

Figure S9. Generated oxygen monitored by a Clark electrode in the PEC experiment. The potential is controlled at 1.23 V vs. RHE. The Faradaic efficiencies of (a) $CoO_x(POM)/Fe_2O_3$, (b) $CoO_x(Salt)/Fe_2O_3$ and (c) Fe_2O_3 photoanodes are 81.9%, 72.6% and 55.2%.

The Clark electrode can detect dissolved oxygen in liquid phase. Before experiment, the air in both liquid phase and head vial is removed by bubbling Ar gas and the electrolyte is covered by a layer of cyclohexane to prohibit the diffusion of produced oxygen from electrolyte. Despite of the pretreatments, it is impossible to completely prevent oxygen from escaping as time goes on. The real amount of O_2 is therefore underestimated to a certain extent.

Figure S10. SEM of $CoO_x(POM)/Fe_2O_3$ photoanode before (a) and after (b) PEC tests, $CoO_x(Salt)/Fe_2O_3$ photoanode before (c) and after (d) PEC tests. It can be observed that the surface morphology of $CoO_x(Salt)/Fe_2O_3$ has a change before and after PEC tests.

Figure S11. B 1s spectra of $CoO_x(POM)/Fe_2O_3$ and $CoO_x(Salt)/Fe_2O_3$ photoanodes before and after PEC tests. It is a solid evidence that different Co-based cocatalysts were fabricated on hematite photoanodes derived from different cobalt sources. CoB_i species is observed on $CoO_x(Salt)/Fe_2O_3$ photoanode but not on $CoO_x(POM)/Fe_2O_3$ photoanode.

Figure S12. (a) O 1s and (b) Fe 2p spectra of CoO_x(POM)/Fe₂O₃, CoO_x(Salt)/Fe₂O₃, and Fe₂O₃ photoanodes. The O 1s high-resolution spectra can be decomposed into three peaks for both pristine and composite photoanodes [2](designated as O_{α}, O_{β} and O_{γ}). The peak at low binding energy is characteristic of metal oxide (O_{α}), while the other two peaks are associated with hydroxide species (O_{β}) and adsorbed molecular water (O_{γ})[3, 4]. After coating with Co-based nanolayers in CoO_x(POM)/Fe₂O₃ and CoO_x(Salt)/Fe₂O₃ electrodes, the peaks of O_{α} are positively shifted, suggesting the change of binding environment caused by cocatalyst overlayers. Meanwhile, the peak of O_{β} in CoO_x(POM)/Fe₂O₃ locates at higher binding energy than that of CoO_x(Salt)/Fe₂O₃. It indicates that CoO_x(POM)/Fe₂O₃ electrode contains more cobalt (oxy)hydroxide than CoO_x(Salt)/Fe₂O₃ electrode which mainly contains CoB_i species.

Figure S13. W 4f spectra of $CoO_x(POM)/Fe_2O_3$ photoanodes before and after PEC tests (over 3h tests). The apparent reduction of XPS signal after PEC tests illustrates that the tiny amount of W element may be as a result of adsorption.

Figure S14. Charge injection efficiency $(\eta_{injection})$ of CoO_x(POM)/Fe₂O₃, CoO_x(Salt)/Fe₂O₃, and Fe₂O₃ photoanodes.

Figure S15. SEM of pristine Fe₂O₃ photoanode: (a) 500 nm (b) 200 nm.

Figure S16. HRTEM of $CoO_x(Salt)/Fe_2O_3$ photoanode. It is considered that the cocatalyst overlayer in $CoO_x(Salt)/Fe_2O_3$ electrode probably consists of CoB_i and CoO_x species and has an amorphous morphology.

Figure S17. TEM images of CoO_x(POM)/Fe₂O₃ photoanode.

Figure S18. (a) UV-vis diffuse reflectance spectra of Fe_2O_3 and $CoO_x(POM)/Fe_2O_3$. (b) Tauc plot of Fe_2O_3 (estimated as 2.07 eV). Because the CoO_x layer owns an ultrathin nanostructure, a negligible increase of absorbance is observed after fabricating CoO_x overlayer on hematite photoanode.

Catalysts	Electrolyte	J with	J without	Ratio	Fabricatin	Ref.
		cocatalyst	cocatalyst		g method	
CoO _x (PO	80 mM	1.1	0.5	2.2	PD	This
M), Fe ₂ O ₃	borate					work
b)	buffer pH 9					
CoO _x (Salt	80 mM	0.7	0.5	1.4	PD	This
), Fe ₂ O ₃ ^{b)}	borate					work
	buffer pH 9					
CoO _x (PO	1 M NaOH	2.4	1.2	2.0	PD	This
M), Fe ₂ O ₃	pH 13.6					work
b)						
Co ₃ O ₄ ,	0.5 M KOH	0.64	Ca. 0.4	1.6	drop-casti	[5]
$Fe_2O_3^{b)}$	pH 13.43				ng	
Co ₃ O ₄ ,	1 M NaOH	1.2	0.72	1.67	HT	[6]
Fe ₂ O ₃ ^{b)}	рН 13.6					
Co ₃ O ₄ ,	1 M NaOH	1.23	0.83	Ca.	HT	[7]
Fe ₂ O ₃ ^{b)}	рН 13.6			1.48		
CoO _x ,	1 M KOH	0.65	0.25	Ca. 2.6	ALD	[8]
Fe ₂ O ₃ ^{b)}						
CoO _x ,	0.1 M KOH	2.1	1.4	Ca. 1.5	ALD	[9]
$Fe_2O_3^{\ c)}$	pH 13.1					
Co-Pi,	1 M NaOH	Ca. 0.6	Ca. 0.41	Ca.	ED	[10]
Fe ₂ O ₃ ^{b)}	рН 13.6			1.46		

Table S1 Comparison of our composite photoanode to other hematite photoanodes coupled Co-based cocatalysts^{a)}

a): AM 1.5G 100 mW/cm², b): current density at 1.23 V_{RHE} (mA/cm²), c): current density at 1.53 V_{RHE} (mA/cm²) PD = photodeposition method, HT = hydrothermal method, ALD = atomic layer deposition method, ED = electrodeposition method.

Element	Fe ₂ O ₃	CoO _x (POM)/Fe ₂ O ₃	CoO _x (Salt)/Fe ₂ O ₃	Co ₈ POM
B 1s	1.97	1.58	3.65	-
C 1s	49.31	46.18	44.8	40.22
Fe 2p	11.31	8.54	8.46	-
O 1s	37.41	37.96	39.39	34.79
Co 2p	-	4.63	3.7	3.57
W 4f	-	0.57	-	8.13

Table S2 Elemental composition (%) of CoO_x(POM)/Fe₂O₃, CoO_x(Salt)/Fe₂O₃, and Fe₂O₃ determined by XPS

In a Co₈POM molecular formula ([(A- α -SiW₉O₃₄)₂Co₈(OH)₆(H₂O)₂(CO₃)₃]¹⁶⁻), element W is more than element Co. The W/Co ratio in CoO_x(POM)/Fe₂O₃ is 0.12 while that in Co₈POM is 2.28 (ideal value is 2.25). This results confirm that Co₈POM is affected by photo-generated carriers, transforming into an ultrathin CoO_x overlayer in situ. Element Si is not representative for the reason that FTO also contains element Si. In addition, Co content of CoO_x(Salt)/Fe₂O₃ is comparable to that of CoO_x(POM)/Fe₂O₃ (in the form of Co to Fe ratio).

SampleW to Co ratioCo to Fe ratioB to Fe ratio $CoO_x(POM)/Fe_2O_3$ 0.180.150.37 $CoO_x(Salt)/Fe_2O_3$ -0.251.12

1.71

2.25

Co₈POM

Co₈POM (ideal)

Table S3 Determination of metal element ratios in the POM and electrodes obtained by ICP-AES

It is still observed that W is not obviously influenced by hematite (adsorption is unavoidable). In addition, Co content of $CoO_x(Salt)/Fe_2O_3$ is comparable to that of $CoO_x(POM)/Fe_2O_3$ (In order to match with the atom number of Co ions in Co_8POM molecular, a concentration of 16 μ M Co²⁺ solution was used in place of 2 μ M Co₈POM solution).

Table S4 Determination of metal element amount in the POM and electrodes obtained by ICP-AES (for calculating ratios in table S3)

Sample	Fe	Co	W	В
	10 ⁻⁶ mol/L			
CoO _x (POM)/Fe ₂ O ₃	17.19	2.63	0.48	6.34
CoO _x (Salt)/Fe ₂ O ₃	13.60	3.42	-	15.25
Co ₈ POM	-	1216.98	2086.33	-

The amount of each metal is detected based on a piece of photoanode sample. For ICP-AES measurements, the composite catalysts on this piece of electrode were dissolved into acid solution.

~ .		~
Sample	Fitted linear slopes	Composite/pristine
		photoanodes ratio in slope
Pristine Fe ₂ O ₃	0.015	1
CoO _x (POM)/Fe ₂ O ₃	0.021	1.4
CoO _x (POM)/Fe ₂ O ₃ after test	0.019	1.3
CoO _x (Salt)/Fe ₂ O ₃	0.021	1.4
CoO _x (Salt)/Fe ₂ O ₃ after test	0.016	1.1

Table S5 Fitting slopes of all electrodes and calculated ratios according to the results of electrochemical active surface areas

References

[1] J. Wei, Y. Feng, P. Zhou, Y. Liu, J. Xu, R. Xiang, Y. Ding, C. Zhao, L. Fan, C. Hu, ChemSusChem 8 (2015) 2630-2634.

[2] J. Yang, H. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem. C 114 (2010) 111-119.

[3] X. Zhou, J. Huang, F. Zhang, Y. Zhao, Y. Zhang, Y. Ding, Dalton Trans. 46 (2017) 10602-10610.

[4] J. Huang, Y. Zhang, Y. Ding, ACS Catal. 7 (2017) 1841-1845.

[5] J.M. Feckl, H.K. Dunn, P.M. Zehetmaier, A. Müller, S.R. Pendlebury, P. Zeller, K. Fominykh, I. Kondofersky, M. Döblinger, J.R. Durrant, C. Scheu, L. Peter, D. Fattakhova-Rohlfing, T. Bein, Adv. Mater. Interfaces 2 (2015) 1500358.

[6] L. Xi, P.D. Tran, S.Y. Chiam, P.S. Bassi, W.F. Mak, H.K. Mulmudi, S.K. Batabyal, J. Barber, J.S.C. Loo, L.H. Wong, J. Phys. Chem. C 116 (2012) 13884-13889.

[7] P. Zhang, T. Wang, X. Chang, L. Zhang, J. Gong, Angew. Chem. Int. Ed. 128 (2016) 5945 –5949.

[8] C. Du, J. Wang, X. Liu, J. Yang, K. Cao, Y. Wen, R. Chen, B. Shan, Phys. Chem. Chem. Phys. 19 (2017) 14178-14184.

[9] S.C. Riha, B.M. Klahr, E.C. Tyo, S. Seifert, S. Vajda, M.J. Pellin, T.W. Hamann, A.B.F. Martinson, ACS Nano 7 (2013) 2396–2405.

[10] D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin, J. Am. Chem. Soc. 131 (2009) 6086-6087.