Synthesis of Li_{4+x}Si_{1-x}Fe_xO₄ solid solution by dry ball milling and its highly efficient CO₂ chemisorption in a wide temperature range and low CO₂ concentrations

Hugo A. Lara-García^{1,*}, Oscar Ovalle-Encinia², José Ortiz-Landeros³, Enrique Lima² and Heriberto Pfeiffer^{2,*}

¹Instituto de Física, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de México, Mexico.

²Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de México, Mexico.

³Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, UPALM, Av. IPN s/n, CP 07738, Ciudad de México, Mexico

**Corresponding authors: <u>hugo.lara@fisica.unam.mx</u> (H. A. Lara-García), <i>pfeiffer@materiales.unam.mx* (H. Pfeiffer)

Table S.1. $Li_{4+x}Si_{1-x}Fe_xO_4$ unit cell atomic positions. (x=0.1, 0.2, 0.3, 0.4 and 0.5)						
Atom symbol (occ.)	Wyckoff site	x (fracc.)	y (fracc.)	z (fracc.)		
Si(1-x), Fe(x)	E	0.34200	0.25000	0.00560		
Si(1-x), Fe(x)	Е	0.75400	0.25000	0.13860		
Si(1-x), Fe(x)	Е	0.47720	0.	0.71520		
			25000			
Si(1-x), Fe(x)	Е	0.20100	0.25000	0.29240		
Si(1-x), Fe(x)	Е	0.04000	0.25000	0.57730		
Si(1-x), Fe(x)	E	0.8941	0.25000	0.8567		
Si(1-x), Fe(x)	E	0.61500	0.25000	0.42900		
0	F	0.3560	0.0265	0.0579		
0	F	0.7860	0.0342	0.1956		
0	F	0.4994	0.0305	0.7715		
0	F	0.2185	0.0283	0.3484		
0	F	0.0668	0.0316	0.6344		
0	F	0.9269	0.0330	0.9175		
0	F	0.6530	0.0283	0.4811		
0	Е	0.1998	0.25	0.9638		
0	E	0.6186	0.25	0.0977		
0	E	0.3352	0.25	0.6744		
0	E	0.0626	0.25	0.2447		
0	Е	0.9082	0.25	0.5278		
0	E	0.7611	0.25	0.8143		
0	E	0.4745	0.25	0.3985		
0	E	0.4194	0.25	0.9341		
0	E	0.8436	0.25	0.0682		
0	E	0.5526	0.25	0.6386		
0	Е	0.2842	0.25	0.2228		
0	E	0.1308	0.25	0.5114		
0	E	0.9918	0.25	0.7957		
0	Е	0.6967	0.25	0.3561		
Li	F	0.3823	0.0072	0.4068		
Li	F	0.8123	0.0006	0.5448		
Li	F	0.6605	0.0112	0.8270		

Supplementary Information

Li	F	0.5255	0.9981	0.1173
Li	Е	0.2722	0.25	0.8558
Li	Е	0.4176	0.25	0.5491
Li	Е	0.1321	0.25	0.1464
Li	Е	0.9695	0.25	0.4271
Li	Е	0.4490	0.25	0.278
Li	Е	0.7272	0.25	0.6977
Li	Е	0.5940	0.25	0.9794
Li	F	0.1962	0.9631	0.0192
Li	F	0.3309	0.9681	0.7279
Li	F	0.9515	0.0298	0.7108
Li	F	0.0790	0.0278	0.8663
Li	F	0.2373	0.0379	0.5977
Li	Е	0.1407	0.25	0.7360
Li	Е	0.0082	0.25	0.0076
Li	Е	0.8701	0.25	0.2956

Table S2. Specific surface area obtained using BET model									
Sample	Li ₄ SiO ₄ SS	Li ₄ SiO ₄ DBM	Li ₅ FeO ₄ SS	Li ₅ FeO ₄ DBM	SiFe01 DBM	SiFe02 DBM	SiFe03 DBM	SiFe04 DBM	SiFe05 DBM
Surface area (m²/g)	1.1	3.1	1	2.9	3	3.1	3.1	3.2	3.3

Figure S1. N_2 adsorption-desorption isotherms of $\rm Li_4SiO_4,\ Li_5FeO_4$ and $\rm Li_{4.5}Si_{0.5}Fe_{0.5}O_4$ samples.

Figure S2. Maximum isothermal capture at each temperature in the $Li_{4.5}Si_{0.5}Fe_{0.5}O_4$ using a CO₂ partial pressure of 0.2 and a saturated atmosphere of CO₂

Figure S3. Eyring-type plot of $\ln(k/T)$ versus 1/T for data obtained using a double exponential reaction model in the isotherms performed using a CO₂ partial pressure of 0.2.

