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Figure S5. (a) The shielding efficiency of the 10-mm-thick PV A-talc-2 organohydrogel
(without TA) to ultraviolet light (365 nm). (b) Transmittance of the organohydrogels
with different thicknesses and TA @talc contents for visible light (550 nm) and UV
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Figure S8. The T-pen can still control a smartphone after pressing or sliding the screen
10000 times.

Figure S9. The T-pen can operate the smartphone at -30°C.

Movie S1. The PVA-TA@talc organohydrogel can withstand multiple extrusions from
a sport utility vehicle (SUV) weighing 1.7 tons without sustaining any damage.

Movie S2. The T-pen consisting of the PVA-1 organohydrogel and fine iron rods is

able to act as a substitute for a finger and can slide and press the phone screen.

Table S1. Compositions of the ionic conductive supramolecular PVA-TA@talc



organohydrogels.

Code TA@tale H,0 EG  Anhydrous PVA
(ml) (ml) (ml)  aluminum (2)
chloride (g)
PVA-0 0 10 10 0.2667 3.5294
PVA-1 2.5 7.5 10 0.2667 3.5294
PVA-2 5 5 10 0.2667 3.5294
PVA-3 7.5 2.5 10 0.2667 3.5294
PVA-4 10 0 10 0.2667 3.5294

Tale solution TA@talc solution
Figure S2. (a) Color of the talc and TA@talc suspension. (b) SEM images of the

morphology of the TA and TA@talc particles.
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Figure S3. High-resolution XPS spectra of C 1s for dried (a) talc particles and (b)

TA@talc particles.

Table S2. Statistical results of the Gauss-fitted peak compositions of the dried talc

and TA@talc particles.
Functional groups Binding energy (eV) Talc TA@talc
(%) (%)
C-CH) 284.61 21.05 21.39
C-0 286.01 2.76 10.58
C=0 ~288.5 9.18 11.8

n-m* 291.06 — 2.96




Figure S4. The nonconductive pure PVA organohydrogel (PVA-0) and the conductive

PVA-TA@talc organohydrogel (PVA-4).

Figure S5. (a) The shielding efficiency of the 10-mm-thick PV A-talc-2 organohydrogel
(without TA) to ultraviolet light (365 nm). (b)Transmittance of the organohydrogels
with different thicknesses and TA @talc contents for visible light (550 nm) and UV
light (365 nm). Red bars represent the test results of organohydrogels with a 3 mm
thickness, and green bars represent the test results of organohydrogels with a 10 mm
thickness. (The gel corresponds to the PVA-TA@talc organohydrogel without ions.)
The talc itself has a UV-reflecting function. In our work, TA has been oxidized into
polymerized p-TA. Therefore, we think that the simple addition of TA powder may
differ from the actual results. To this end, we prepared the PV A-talc-2 organohydrogel
(without TA), this PVA-talc-2 organohydrogel has good UV shielding effect (Figure

S5a), but much lower than the PVA-2 organohydrogel (with TA). Therefore, it should



be that talc and TA work together to impart excellent UV shielding ability to the

organohydrogel.
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Figure S6. The gauge factor (S) measurement approach.

Table S3. Gauge factor (S) comparisons between the organohydrogel (PVA-1) sensor

and recently reported ionic gel-based sensors.

Base gel Conductive Gauge factor (tensile Ref

filler strain)
PAA AP* 0.23(40%), 38

7.8(2000%)
PAAmM Li* 0.84 (40%) 50
PAA Graphene/ 1.32(500%) 51
Fe3+
HPAAm-HLPs/alginate Ca?* 2.67(150%) 52
PVA/ Fe3* 0.478(200%) 53
Polyvinylpyrrolidone

PVA A 9.17 (1.2%) This work
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Figure S7. EMG signals detected by a commercial Ag/AgCl electrode.

In order to complete the durability test of the T-pen, two volunteers used the T-
pen to manually complete the following operations: (1) The T-pen slides the screen of
the mobile phone 10000 times. (2) The T-pen presses the screen 10000 times. The

condition of the T-pen operating the mobile phone were analyzed.

Pressing the screen 10000 times Sliding the screen 10000 times
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=8

The T-pen can still control a smartphone
after pressing or sliding the screen 10000 times.

Figure S8. The T-pen can still control a smartphone after pressing or sliding the screen

10000 times.



Figure S9. The T-pen can operate the smartphone at -30°C.



