Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A green electrochemical transformation of inferior coals to crystalline graphite for

stable Li ion storage

Zhenglu Zhu,^a Haibin Zuo,^{*a} Shijie Li,^a Jiguo Tu,^a Wei Guan,^a Wei-Li Song,^{*b} Jun Zhao,^a

Donghua Tian^a and Shuqiang Jiao*^a

^a State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083,

P R China.

^b Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P R China

* E-mails: zuohaibin@ustb.edu.cn (H Zuo), weilis@bit.edu.cn (W.L. Song), sjiao@ustb.edu.cn (S Jiao)

	KL-RAW	KL-HPC
Proximate analyses(wt%, db)		
Ash	10.37	0.49
Volatile matter	32.2	49.51
Elemental analyses(wt%, daf)		
Carbon	83.25	82.49
Hydrogen	5.37	5.50
Nitrogen	1.8	4.31
sulfur	1.09	0.55
Oxygen	8.49	7.15

Table S1. Proximate (dry basis, db) and elemental (dry ash-free basis, daf) analyses of KL coal.

Sample	Abbreviation	
KL RAW coal	RC	
HyperCoal	HPC	
850°C-2.6V-10h	EG1	
900°C-2.6V-10h	EG2	
950°C-2.2V-10h	EG3	
950°C-2.4V-10h	EG4	
950°C-2.6V-2h	EG5	
950°C-2.6V-4h	EG6	
950°C-2.6V-6h	EG7	

 Table S2. Abbreviations of samples under different conditions.

Electrode potential	Electrolysis time	Carbon recovery
no potential	20	91%
EG1	10 h	68%
EG2	10 h	60%
EG3	10 h	65%
EG4	10 h	62%
EG5	2 h	79%
EG6	4 h	75%
EG7	6 h	52%

Table S3. The carbon recovery after electrolysis of 0.85g HPC in CaCl₂ under different conditions

* The decrease in yield is attributed to the removal of oxygen, the drop of HPC into the molten salt during electrolysis and the mass loss during the washing process.

samples	BET surface Area (m ² /g)	Total pore volume (cc/g)	Mesopore Volume (cc/g)	Mesopore diameter (nm)
HPC	25.454	/	0.07402	2.191
EG7	131.180	0.1092	0.0605	3.407

Table S4. Structural parameters of HPC and synthetic graphite structure EG7.

Fig. S1 SEM images of the obtained products at different conditions in CaCl₂. (a) EG1. (b) EG2. (c) EG3. (d) EG4. (e) EG5. (f) EG6.

Fig. S2 XRD patterns of electrolyized HPC under different voltages as indicated at 850 °C and 900°C.

Fig. S3 (a) XRD pattern and (b) Raman spectra of pyrolytic HPC at 850°C for 20 h.

Fig. S4 Current response under 2.6V at 950°C for 6h.

Fig. S5 Pore size distribution (PSD) curves of HPC and EG7.

Fig. S6 Galvanostatic charge/discharge measurement (GCD) curve of HPC at a rate of 0.2C.

Fig. S7 (a) CV curves of graphite electrode at different scan rates from 0.1 to 1mV s⁻¹.

(b) Determination of b values using the relationship between the peak current and the scan rate.
 (c) Plots of v^{1/2} vs. i/v^{1/2} at different redox states for obtaining constants k₁ and k₂, respectively.
 (d) The capacitive contribution at a scan rate of 1 mV s⁻¹.
 (e) Contribution ratio of the capacitive- and diffusion-controlled charge versus scan rate.

Supplementary method S1: Calculation of the capacitance contribution.

The current with scan rate in the CV test obeys the power law as below:

$$i=av^b$$
 (1)

$$\log(i) = b\log(\upsilon) + \log a \tag{2}$$

where value b can be obtained from the slope of log(i) versus log(v) plot. Similarly, Equation (1) can be divided into two sections through the method proposed by Dunn and co-workers, as follows:

$$i = k_1 \upsilon + k_2 \upsilon^{1/2}$$
 (3)

$$i/v^{1/2} = k_1 v^{1/2} + k_2 \tag{4}$$

where k_1 and k_2 are constants. The values of k_1 and k_2 can be obtained by the slope and intercept of $i/v^{1/2}$ versus $v^{1/2}$ plot, respectively. By applying k_1 and k_2 values at different voltages in k_1v and $k_2v^{1/2}$, the capacitive and diffusion-controlled currents can be determined.