Supporting information

Stabilized the Layered Manganese Oxide by Cationic ion Substitution Doping

Zhimi Hu^a, Ming Chen^b, Hao Zhang^c, Liang Huang^a, Kaisi Liu^a, Yansong Ling^a, He Zhou^a, Zheng Jiang^c, Guang Feng^b and Jun Zhou^a*

^aWuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
^bState Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
^cShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China

* Correspondence author: jun.zhou@mail.hust.edu.cn

Fig. S1. Morphology and structure of 2D KMnO and 2D M-KMnO for a reaction time of 10 minutes. The HAADF-TEM images and the corresponding mapping images of a) 2D KMnO, b) 2D Ba-KMnO, c) 2D Sn-KMnO, d) 2D Co-KMnO and e) Ni-KMnO. The HR-TEM images of h) 2D KMnO, i) 2D Ba-KMnO, j) 2D Sn-KMnO, k) 2D Co-KMnO and l) 2D Ni-KMnO; insert shows the SAED patterns.

Fig. S2. Morphology and structure of KMnO-30 and M-KMnO-30 for a reaction time of 30 minutes. The HAADF-TEM images and the corresponding mapping images of a) KMnO-30, b) Ba-KMnO-30, c) Sn-KMnO-30, d) Co-KMnO-30 and e) Ni-KMnO-30. The HR-TEM images of h) KMnO-30, i) Ba-KMnO-30, j) Sn-KMnO-30, k) Co-KMnO-30 and l) Ni-KMnO-30; insert shows the SAED patterns.

Fig. S3. EDS patterns for a) 2D KMnO, b) 2D Ba-KMnO, c) 2D Sn-KMnO, d) 2D Co-KMnO and e) 2D Ni-KMnO.

Fig. S4. Morphology conversion of the 2D KMnO, 2D Ba-KMnO and 2D Co-KMnO samples under heat treatment at 400 $^{\circ}$ C for varying times. a-e) SEM images of 2D KMnO under heat treatment from 0.5 to 6 h. f-j) SEM images of Ba-KMnO under heat treatment from 0.5 to 6 h. k-o) SEM images of 2D Co-KMnO under heat treatment from 0.5 to 6 h.

Fig. S5. Structure conversion of 2D KMnO, 2D Ba-KMnO and 2D Co-KMnO samples under heat treatment at 400 °C for varying times. a) XRD patterns for 2D KMnO under heat treatment from 0.5 to 6 h. b) XRD patterns for 2D Ba-KMnO under heat treatment from 0.5 to 6 h. c) XRD patterns for 2D Co-KMnO under heat treatment from 0.5 to 6 h.

Fig. S6. XPS patterns for 2D KMnO and 2D M-KMnO. a) Mn 2p. b) O 1s.

Fig. S7. XPS patterns for a) Sn 3d, b) Ba 3d, c) Co 2p and d) Ni 2p.

Fig. S8. a) XANES patterns for 2D Co-KMnO, Co_2O_3 and CoO. b) XANES patterns for 2D Co-KMnO, Co_2O_3 and CoO measured in the range of 7704 to 7944 eV. c) XANES patterns for 2D Ni-KMnO and NiO. d) XANES patterns for 2D Ni-KMnO and NiO in the range of 8337 to 8494 eV.

Fig. S9. Calculated Structures. a) pure δ -Mn₈O₁₆; b) δ -AMn₇O₁6 (A= K, Ba, Co); c) δ -AMn₈O₁₆ (A= K, Ba, Co); d) pure α -Mn₈O₁₆; e) α -AMn₇O₁₆ (A= K, Ba, Co) and f) α -Mn₈O₁₆ (A= K, Ba, Co).

Fig. S10. Snapshots of the key states in the δ - to α -AMn₇O₁₆ (A = Mn, Co) transitions. a) δ -AMn₇O₁₆; b) α -AMn₇O₁₆. A = Mn denotes pure Mn₈O₁₆.

Fig. S11. CV curves for a) 2D KMnO and b) 2D Ba-KMnO at different scan rates ranging from 5 to 100 mV/s.

Fig. S12. Charge and discharge curves for a) 2D KMnO, b) 2D Ba-KMnO and c) 2D Co-KMnO with a current density ranging from 0.5 to 10 A/g.

Fig. S13. a) N₂ adsorption desorption isotherms of samples 2D KMnO, 2D Ba-KMnO and 2D Co-KMnO. b) Specific surface area of 2D KMnO, 2D Ba-KMnO and 2D Co-KMnO.

Table S1. Ionic radius of different ion species.

lon species	Mn ⁴⁺	Ba ²⁺	Sn²+	Co ³⁺	Ni ²⁺	K⁺
Ionic radius	54 pm	135 pm	112 pm	54.5 pm	69 pm	138 pm

Table S2. Elemental assay before and after H⁺ exchange from ICP-OES measurements.

Sample	2D KMnO		2D Ba-KMnO		2D Sn-KMnO		2D Co-KMnO		2D Ni-KMnO	
Initial ·	К	4.12%	К	0.87%	К	0.75%	К	1.86%	к	1.69%
			Ва	1.97%	Sn	1.76%	Со	3.62%	Ni	3.53%
After H⁺ exchange	К	0.03%	К	0.01%	К	0.02%	К	0.05%	к	0.03%
			Ва	0.02%	Sn	0.04%	Co	2.14%	Ni	1.81%

Table S3. EXAFS fitting parameters

Sample	Shell	N	R (Å)	∆E₀ (eV)	σ²(10 ⁻³ Ų)	R-factor	
KMnO	Mn-O	4.3±0.5	1.90±0.01	-6.3±1.8	4.2±1.3	0.007	
	Mn-Mn	4.2±0.9	2.86±0.02	-10.7±2.3	8.3±2.2		
Ba-KMnO	Mn-O	4.2±0.5	1.90±0.01	-6.9±1.8	4.3±1.3	0.007	
	Mn-X	4.3±0.9	2.86±0.02	-10.8±2.2	8.4±2.1		
Co-KMnO	Mn-O	4.2±0.6	1.90±0.01	-8.8±2.1	3.5±1.4	0.008	
	Mn-X	4.2±0.8	2.84±0.01	-13.6±2.0	5.4±1.6		
	Co-O	4.3±0.4	1.92±0.01	-0.1±1.5	3.7±1.2	0.005	
	Co-X	4.4±0.6	2.85±0.01	-0.6±1.5	4.3±1.1		

X presents Mn, Ba or Co; N is coordination numbers; R is the internal atomic distance; σ^2 is Debye-Waller factor; ΔE_0 is the edge-energy shift.